|
![]() |
|||
|
||||
OverviewThis book about fuzzy classifier design briefly introduces the fundamentals of supervised pattern recognition and fuzzy set theory. Fuzzy if-then classifiers are defined and some theoretical properties thereof are studied. Popular training algorithms are detailed. Non if-then fuzzy classifiers include relational, k-nearest neighbor, prototype-based designs, etc. A chapter on multiple classifier combination discusses fuzzy and non-fuzzy models for fusion and selection. Full Product DetailsAuthor: Ludmila I. KunchevaPublisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Imprint: Physica-Verlag GmbH & Co Edition: 2000 ed. Volume: 49 Dimensions: Width: 15.50cm , Height: 1.90cm , Length: 23.50cm Weight: 1.420kg ISBN: 9783790812985ISBN 10: 3790812986 Pages: 315 Publication Date: 26 April 2000 Audience: College/higher education , Professional and scholarly , Postgraduate, Research & Scholarly , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of Contents1. Introduction.- 1.1 What are fuzzy classifiers?.- 1.2 The data sets used in this book.- 1.3 Notations and acronyms.- 1.4 Organization of the book.- 1.5 Acknowledgements.- 2. Statistical pattern recognition.- 2.1 Class, feature, feature space.- 2.2 Classifier, discriminant functions, classification regions.- 2.3 Clustering.- 2.4 Prior probabilities, class-conditional probability density functions, posterior probabilities.- 2.5 Minimum error and minimum risk classification. Loss matrix.- 2.6 Performance estimation.- 2.7 Experimental comparison of classifiers.- 2.8 A taxonomy of classifier design methods.- 3. Statistical classifiers.- 3.1 Parametric classifiers.- 3.2 Nonparametric classifiers.- 3.3 Finding k-nn prototypes.- 3.4 Neural networks.- 4. Fuzzy sets.- 4.1 Fuzzy logic, an oxymoron?.- 4.2 Basic definitions.- 4.3 Operations on fuzzy sets.- 4.4 Determining membership functions.- 5. Fuzzy if-then classifiers.- 5.1 Fuzzy if-then systems.- 5.2 Function approximation with fuzzy if-then systems.- 5.3 Fuzzy if-then classifiers.- 5.4 Universal approximation and equivalences of fuzzy if-then classifiers.- 6. Training of fuzzy if-then classifiers.- 6.1 Expert opinion or data analysis?.- 6.2 Tuning the consequents.- 6.3 Toning the antecedents.- 6.4 Tuning antecedents and consequents using clustering.- 6.5 Genetic algorithms for tuning fuzzy if-then classifiers.- 6.6 Fuzzy classifiers and neural networks: hybridization or identity?.- 6.7 Forget interpretability and choose a model.- 7. Non if-then fuzzy models.- 7.1 Early ideas.- 7.2 Fuzzy k-nearest neighbors (k-nn) designs.- 7.3 Generalized nearest prototype classifier (GNPC).- 8. Combinations of multiple classifiers using fuzzy sets.- 8.1 Combining classifiers: the variety of paradigms.- 8.2 Classifier selection.- 8.3 Classifier fusion.- 8.4 Experimental results.- 9. Conclusions: What to choose?.- A. Appendix: Numerical results.- A.1 Cone-torus data.- A.2 Normal mixtures data..- A.3 Phoneme data.- A.4 Satimage data.- References.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |