Fuzzy Classifier Design

Author:   Ludmila I. Kuncheva
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Edition:   Softcover reprint of hardcover 1st ed. 2000
Volume:   49
ISBN:  

9783790824728


Pages:   315
Publication Date:   21 October 2010
Format:   Paperback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $498.96 Quantity:  
Add to Cart

Share |

Fuzzy Classifier Design


Add your own review!

Overview

This book about fuzzy classifier design briefly introduces the fundamentals of supervised pattern recognition and fuzzy set theory. Fuzzy if-then classifiers are defined and some theoretical properties thereof are studied. Popular training algorithms are detailed. Non if-then fuzzy classifiers include relational, k-nearest neighbor, prototype-based designs, etc. A chapter on multiple classifier combination discusses fuzzy and non-fuzzy models for fusion and selection.

Full Product Details

Author:   Ludmila I. Kuncheva
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Imprint:   Physica-Verlag GmbH & Co
Edition:   Softcover reprint of hardcover 1st ed. 2000
Volume:   49
Dimensions:   Width: 15.50cm , Height: 1.70cm , Length: 23.50cm
Weight:   0.504kg
ISBN:  

9783790824728


ISBN 10:   3790824720
Pages:   315
Publication Date:   21 October 2010
Audience:   College/higher education ,  Professional and scholarly ,  Postgraduate, Research & Scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

1. Introduction.- 1.1 What are fuzzy classifiers?.- 1.2 The data sets used in this book.- 1.3 Notations and acronyms.- 1.4 Organization of the book.- 1.5 Acknowledgements.- 2. Statistical pattern recognition.- 2.1 Class, feature, feature space.- 2.2 Classifier, discriminant functions, classification regions.- 2.3 Clustering.- 2.4 Prior probabilities, class-conditional probability density functions, posterior probabilities.- 2.5 Minimum error and minimum risk classification. Loss matrix.- 2.6 Performance estimation.- 2.7 Experimental comparison of classifiers.- 2.8 A taxonomy of classifier design methods.- 3. Statistical classifiers.- 3.1 Parametric classifiers.- 3.2 Nonparametric classifiers.- 3.3 Finding k-nn prototypes.- 3.4 Neural networks.- 4. Fuzzy sets.- 4.1 Fuzzy logic, an oxymoron?.- 4.2 Basic definitions.- 4.3 Operations on fuzzy sets.- 4.4 Determining membership functions.- 5. Fuzzy if-then classifiers.- 5.1 Fuzzy if-then systems.- 5.2 Function approximation with fuzzy if-then systems.- 5.3 Fuzzy if-then classifiers.- 5.4 Universal approximation and equivalences of fuzzy if-then classifiers.- 6. Training of fuzzy if-then classifiers.- 6.1 Expert opinion or data analysis?.- 6.2 Tuning the consequents.- 6.3 Toning the antecedents.- 6.4 Tuning antecedents and consequents using clustering.- 6.5 Genetic algorithms for tuning fuzzy if-then classifiers.- 6.6 Fuzzy classifiers and neural networks: hybridization or identity?.- 6.7 Forget interpretability and choose a model.- 7. Non if-then fuzzy models.- 7.1 Early ideas.- 7.2 Fuzzy k-nearest neighbors (k-nn) designs.- 7.3 Generalized nearest prototype classifier (GNPC).- 8. Combinations of multiple classifiers using fuzzy sets.- 8.1 Combining classifiers: the variety of paradigms.- 8.2 Classifier selection.- 8.3 Classifier fusion.- 8.4 Experimental results.- 9. Conclusions: What to choose?.- A. Appendix: Numerical results.- A.1 Cone-torus data.- A.2 Normal mixtures data..- A.3 Phoneme data.- A.4 Satimage data.- References.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List