Fundamentals of Wavelets: Theory, Algorithms, and Applications

Author:   Jaideva C. Goswami ,  Andrew K. Chan (University of Birmingham UK)
Publisher:   John Wiley & Sons Inc
Edition:   2nd edition
ISBN:  

9780470484135


Pages:   382
Publication Date:   21 January 2011
Format:   Hardback
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Our Price $109.95 Quantity:  
Add to Cart

Share |

Fundamentals of Wavelets: Theory, Algorithms, and Applications


Add your own review!

Overview

Full Product Details

Author:   Jaideva C. Goswami ,  Andrew K. Chan (University of Birmingham UK)
Publisher:   John Wiley & Sons Inc
Imprint:   John Wiley & Sons Inc
Edition:   2nd edition
Dimensions:   Width: 16.40cm , Height: 2.60cm , Length: 24.10cm
Weight:   0.717kg
ISBN:  

9780470484135


ISBN 10:   0470484136
Pages:   382
Publication Date:   21 January 2011
Audience:   College/higher education ,  Tertiary & Higher Education
Format:   Hardback
Publisher's Status:   Active
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Table of Contents

1.What is this book all about? 2. Mathematical Preliminary. 2.1 Linear Spaces. 2.2 Vectors and Vector Spaces. 2.3 Basis Functions, Orthogonality and Biothogonality. 2.4 Local Basis and Riesz Basis. 2.5 Discrete Linear Normed Space. 2.6 Approximation by Orthogonal Projection. 2.7 Matrix Algebra and Linear Transformation. 2.8 Digital Signals. 2.9 Exercises. 2.10 References. 3. Fourier Analysis. 3.1 Fourier Series. 3.2 Rectified Sine Wave. 3.3 Fourier Transform. 3.4 Properties of Fourier Transform. 3.5 Examples of Fourier Transform. 3.6 Poisson’s Sum and Partition of ZUnity. 3.7 Sampling Theorem. 3.8 Partial Sum and Gibb’s Phenomenon. 3.9 Fourier Analysis of Discrete-Time Signals. 3.10 Discrete Fourier Transform (DFT). 3.11 Exercise. 3.12 References. 4. Time-Frequency Analysis. 4.1 Window Function. 4.2 Short-Time Fourier Transform. 4.3 Discrete Short-Time Fourier Transform. 4.4 Discrete Gabor Representation. 4.5 Continuous Wavelet Transform. 4.6 Discrete Wavelet Transform. 4.7 Wavelet Series. 4.8 Interpretations of the Time-Frequency Plot. 4.9 Wigner-Ville Distribution. 4.10 Properties of Wigner-Ville Distribution. 4.11 Quadratic Superposition Principle. 4.12 Ambiguity Function. 4.13 Exercise. 4.14 Computer Programs. 4.15 References. 5. Multiresolution Anaylsis. 5.1 Multiresolution Spaces. 5.2 Orthogonal, Biothogonal, and Semiorthogonal Decomposition. 5.3 Two-Scale Relations. 5.4 Decomposition Relation. 5.5 Spline Functions and Properties. 5.6 Mapping a Function into MRA Space. 5.7 Exercise. 5.8 Computer Programs. 5.9 References. 6. Construction of Wavelets. 6.1 Necessary Ingredients for Wavelet Construction. 6.2 Construction of Semiorthogonal Spline Wavelets. 6.3 Construction of Orthonormal Wavelets. 6.4 Orthonormal Scaling Functions. 6.5 Construction of Biothogonal Wavelets. 6.6 Graphical Display of Wavelet. 6.7 Exercise. 6.8 Computer Programs. 6.9 References. 7. DWT and Filter Bank Algorithms. 7.1 Decimation and Interpolation. 7.2 Signal Representation in the Approximation Subspace. 7.3 Wavelet Decomposition Algorithm. 7.4 Reconstruction Algorithm. 7.5 Change of Bases. 7.6 Signal Reconstruction in Semiorthogonal Subspaces. 7.7 Examples. 7.8 Two-Channel Perfect Reconstruction Filter Bank. 7.9 Polyphase Representation for Filter Banks. 7.10 Comments on DWT and PR Filter Banks. 7.11 Exercise. 7.12 Computer Program. 7.13 References. 8. Special Topics in Wavelets and Algorithms. 8.1 Fast Integral Wavelet Transform. 8.2 Ridgelet Transform. 8.3 Curvelet Transform. 8.4 Complex Wavelets. 8.5 Lifting Wavelet transform. 8.6 References. 9. Digital Signal Processing Applications. 9.1 Wavelet Packet. 9.2 Wavelet-Packet Algorithms. 9.3 Thresholding. 9.4 Interference Suppression. 9.5 Faulty Bearing Signature Identification. 9.6 Two-Dimensional Wavelets and Wavelet Packets. 9.7 Edge Detection. 9.8 Image Compression. 9.9 Microcalcification Cluster Detection. 

Reviews

This book provides a thorough treatment of wavelet theory and is very convenient for graduate students and researchers in electrical engineering, physics, and applied mathematics. (Zentralblatt MATH, 2011)<p>


"""This book provides a thorough treatment of wavelet theory and is very convenient for graduate students and researchers in electrical engineering, physics, and applied mathematics."" (Zentralblatt MATH, 2011)  "


This book provides a thorough treatment of wavelet theory and is very convenient for graduate students and researchers in electrical engineering, physics, and applied mathematics. (Zentralblatt MATH, 2011)


Author Information

Jaideva C. Goswami, PhD, is an Engineering Advisor at Schlumberger in Sugarland, Texas. He is also a former professor of Electronics and Communication Engineering at the Indian Institute of Technology, Kharagpur. Dr. Goswami has taught several short courses on wavelets and contributed to the Wiley Encyclopedia of Electrical and Electronics Engineering as well as Wiley Encyclopedia of RF and Microwave Engineering. He has many research papers and patents to his credit, and is a Fellow of IEEE. Andrew K. Chan, PhD, is on the faculty of Texas A&M University and is the coauthor of Wavelets in a Box and Wavelet Toolware. He is a Life Fellow of IEEE.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List