|
![]() |
|||
|
||||
OverviewThis book provides a comprehensive introduction to the theory and practice of spherical microphone arrays, and was written for graduate students, researchers and engineers who work with spherical microphone arrays in a wide range of applications. The new edition includes additions and modifications, and references supplementary Matlab code to provide the reader with a straightforward start for own implementations. The book is also accompanied by a Matlab manual, which explains how to implement the examples and simulations presented in the book. The first two chapters provide the reader with the necessary mathematical and physical background, including an introduction to the spherical Fourier transform and the formulation of plane-wave sound fields in the spherical harmonic domain. In turn, the third chapter covers the theory of spatial sampling, employed when selecting the positions of microphones to sample sound pressure functions in space. Subsequent chapters highlight various spherical array configurations, including the popular rigid-sphere-based configuration. Beamforming (spatial filtering) in the spherical harmonics domain, including axis-symmetric beamforming, and the performance measures of directivity index and white noise gain are introduced, and a range of optimal beamformers for spherical arrays, including those that achieve maximum directivity and maximum robustness are developed, along with the Dolph–Chebyshev beamformer. The final chapter discusses more advanced beamformers, such as MVDR (minimum variance distortionless response) and LCMV (linearly constrained minimum variance) types, which are tailored to the measured sound field. Mathworks kindly distributes the Matlab sources for this book on https://www.mathworks.com/matlabcentral/fileexchange/68655-fundamentals-of-spherical-array-processing. Full Product DetailsAuthor: Boaz RafaelyPublisher: Springer Nature Switzerland AG Imprint: Springer Nature Switzerland AG Edition: Softcover reprint of the original 2nd ed. 2019 Volume: 16 Dimensions: Width: 15.50cm , Height: 1.10cm , Length: 23.50cm Weight: 0.454kg ISBN: 9783030076115ISBN 10: 3030076113 Pages: 193 Publication Date: 01 February 2019 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsReviewsThe book is written mainly for graduate students and researchers in physical acoustics and engineering, although many parts would be suitable for advanced undergraduates. (Edward S. Krebes, The Leading Edge, Vol. 38 (11), November, 2019) Author InformationTab Content 6Author Website:Countries AvailableAll regions |