|
![]() |
|||
|
||||
OverviewThis textbook provides a step-by-step introduction to the tools and principles of high-dimensional statistics. Each chapter is complemented by numerous exercises, many of them with detailed solutions, and computer labs in R that convey valuable practical insights. The book covers the theory and practice of high-dimensional linear regression, graphical models, and inference, ensuring readers have a smooth start in the field. It also offers suggestions for further reading. Given its scope, the textbook is intended for beginning graduate and advanced undergraduate students in statistics, biostatistics, and bioinformatics, though it will be equally useful to a broader audience. Full Product DetailsAuthor: Johannes LedererPublisher: Springer Nature Switzerland AG Imprint: Springer Nature Switzerland AG Edition: 1st ed. 2022 Weight: 0.569kg ISBN: 9783030737948ISBN 10: 3030737942 Pages: 355 Publication Date: 18 November 2022 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsPreface.- Notation.- Introduction.- Linear Regression.- Graphical Models.- Tuning-Parameter Calibration.- Inference.- Theory I: Prediction.- Theory II: Estimation and Support Recovery.- A Solutions.- B Mathematical Background.- Bibliography.- Index.ReviewsAuthor InformationJohannes Lederer is a Professor of Statistics at the Ruhr-University Bochum, Germany. He received his PhD in mathematics from the ETH Zürich and subsequently held positions at UC Berkeley, Cornell University, and the University of Washington. He has taught high-dimensional statistics to applied and mathematical audiences alike, e.g. as a Visiting Professor at the Institute of Statistics, Biostatistics, and Actuarial Sciences at UC Louvain, and at the University of Hong Kong Business School. Tab Content 6Author Website:Countries AvailableAll regions |