Fundamentals of Artificial Neural Networks

Author:   Mohamad Hassoun
Publisher:   MIT Press Ltd
ISBN:  

9780262514675


Pages:   511
Publication Date:   01 January 2003
Recommended Age:   From 18 years
Format:   Paperback
Availability:   Out of print, replaced by POD   Availability explained
We will order this item for you from a manufatured on demand supplier.

Our Price $118.80 Quantity:  
Add to Cart

Share |

Fundamentals of Artificial Neural Networks


Add your own review!

Overview

"Hassoun provides the first systematic account of artificial neural network paradigms by identifying clearly the fundamental concepts and major methodologies underlying most of the current theory and practice employed by neural network researchers. As book review editor of the IEEE Transactions on Neural Networks, Mohamad Hassoun has had the opportunity to assess the multitude of books on artificial neural networks that have appeared in recent years. Now, in Fundamentals of Artificial Neural Networks, he provides the first systematic account of artificial neural network paradigms by identifying clearly the fundamental concepts and major methodologies underlying most of the current theory and practice employed by neural network researchers. Such a systematic and unified treatment, although sadly lacking in most recent texts on neural networks, makes the subject more accessible to students and practitioners. Here, important results are integrated in order to more fully explain a wide range of existing empirical observations and commonly used heuristics. There are numerous illustrative examples, over 200 end-of-chapter analytical and computer-based problems that will aid in the development of neural network analysis and design skills, and a bibliography of nearly 700 references. Proceeding in a clear and logical fashion, the first two chapters present the basic building blocks and concepts of artificial neural networks and analyze the computational capabilities of the basic network architectures involved. Supervised, reinforcement, and unsupervised learning rules in simple nets are brought together in a common framework in chapter three. The convergence and solution properties of these learning rules are then treated mathematically in chapter four, using the ""average learning equation"" analysis approach. This organization of material makes it natural to switch into learning multilayer nets using backprop and its variants, described in chapter five. Chapter six covers most of the major neural network paradigms, while associative memories and energy minimizing nets are given detailed coverage in the next chapter. The final chapter takes up Boltzmann machines and Boltzmann learning along with other global search/optimization algorithms such as stochastic gradient search, simulated annealing, and genetic algorithms."

Full Product Details

Author:   Mohamad Hassoun
Publisher:   MIT Press Ltd
Imprint:   Bradford Books
Dimensions:   Width: 17.80cm , Height: 3.80cm , Length: 22.90cm
Weight:   1.066kg
ISBN:  

9780262514675


ISBN 10:   0262514672
Pages:   511
Publication Date:   01 January 2003
Recommended Age:   From 18 years
Audience:   College/higher education ,  Tertiary & Higher Education
Format:   Paperback
Publisher's Status:   Unknown
Availability:   Out of print, replaced by POD   Availability explained
We will order this item for you from a manufatured on demand supplier.

Table of Contents

Reviews

Author Information

Mohamad Hassoun is Professor in the Department of Electrical and Computer Engineering at Wayne State University.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List