Fundamental Studies of Shock-Driven Hydrodynamic Instabilities

Author:   Yu Liang
Publisher:   Springer Verlag, Singapore
Edition:   1st ed. 2022
ISBN:  

9789811929915


Pages:   172
Publication Date:   10 September 2022
Format:   Hardback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $232.85 Quantity:  
Add to Cart

Share |

Fundamental Studies of Shock-Driven Hydrodynamic Instabilities


Add your own review!

Overview

This book illustrates the latest progress on the hydrodynamic instabilities induced by a shock wave, particularly RM (Richtmyer–Meshkov) instability. The hydrodynamic instabilities play crucial roles in various industrial and scientific fields, such as inertial confinement fusion, supersonic combustion, supernova explosion, etc. This book experimentally and theoretically explores the shock-driven instabilities of complex gas-gas and gas-liquid interfaces. The main difficulty in performing an experimental study on RM instability, especially in a shock-tube circumstance, lies in creating an idealized initial interface because the RM instability is extremely sensitive to the initial condition. This book introduces new experimental methods to generate shape-controllable two-dimensional gaseous interfaces, thickness-controllable gas layers, and water droplets embedded with a vapour bubble in the shock-tube experiments. It covers the latest experiments and theories on the shock-driven hydrodynamic instabilities of multi-mode, multi-layer, and multi-phase interfaces. It explores the effects of the mode-competition, interface-coupling, and phase-transition on interface evolution, respectively. This book establishes a universal nonlinear theory to predict the RM instability of a shocked multi-mode interface based on spectrum analysis. This book quantifies the effects of interface-coupling and reverberating waves on the hydrodynamic instabilities of a shocked multi-layer interface. This book provides the experimental studies of the interaction of a shock wave and a multi-phase droplet and proposes a modified Rayleigh-Plesset equation to predict the vapour bubble collapse inside a droplet.

Full Product Details

Author:   Yu Liang
Publisher:   Springer Verlag, Singapore
Imprint:   Springer Verlag, Singapore
Edition:   1st ed. 2022
Weight:   0.483kg
ISBN:  

9789811929915


ISBN 10:   9811929912
Pages:   172
Publication Date:   10 September 2022
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

Chapter 1. Introduction.- Chapter 2. Shock-driven multi-mode interface evolution.- Chapter 3. Shock-driven multi-layer interface evolution.- Chapter 4. Shock-driven multi-phase interface evolution.- Chapter 5. Conclusions and outlook.

Reviews

Author Information

Dr Yu Liang, is currently a Postdoctoral Associate in the Research Centre on Stability, Instability, and Turbulence at New York University Abu Dhabi. He obtained a Doctoral degree from University of Science and Technology of China in 2020 and a Bachelor degree from Shandong University in 2015. Dr Yu Liang has been studying the Richtmyer-Meshkov (RM) instability, Rayleigh-Taylor (RT) instability, shock-droplet interaction, etc. For RM and RT instabilities, he focuses on the mode-competition, bubble-merging, interface-coupling and three-dimensionality effects on the hydrodynamic instabilities. For shock-droplet interaction, he performed the first experimental study on the shock-induced deformation of a droplet embedded with a vapour bubble. Dr Yu Liang achieved the excellent doctoral dissertation prize from the Chinese Society of Theoretical and Applied Mechanics, the excellent doctoral dissertation prize and the special prize of president scholarship for postgraduatestudents from the Chinese Academy of Sciences.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

wl

Shopping Cart
Your cart is empty
Shopping cart
Mailing List