Functions of One Complex Variable I

Author:   John B. Conway
Publisher:   Springer-Verlag New York Inc.
Edition:   2nd ed. 1978
Volume:   11
ISBN:  

9780387903286


Pages:   322
Publication Date:   24 August 1978
Format:   Hardback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $171.47 Quantity:  
Add to Cart

Share |

Functions of One Complex Variable I


Add your own review!

Overview

Full Product Details

Author:   John B. Conway
Publisher:   Springer-Verlag New York Inc.
Imprint:   Springer-Verlag New York Inc.
Edition:   2nd ed. 1978
Volume:   11
Dimensions:   Width: 15.60cm , Height: 2.00cm , Length: 23.40cm
Weight:   1.440kg
ISBN:  

9780387903286


ISBN 10:   0387903283
Pages:   322
Publication Date:   24 August 1978
Audience:   College/higher education ,  Professional and scholarly ,  Undergraduate ,  Postgraduate, Research & Scholarly
Format:   Hardback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

I. The Complex Number System.- §1. The real numbers.- §2. The field of complex numbers.- §3. The complex plane.- §4. Polar representation and roots of complex numbers.- §5. Lines and half planes in the complex plane.- §6. The extended plane and its spherical representation.- II. Metric Spaces and the Topology of ?.- §1. Definition and examples of metric spaces.- §2. Connectedness.- §3. Sequences and completeness.- §4. Compactness.- §5. Continuity.- §6. Uniform convergence.- III. Elementary Properties and Examples of Analytic Functions.- §1. Power series.- §2. Analytic functions.- §3. Analytic functions as mapping, Möbius transformations.- IV. Complex Integration.- §1. Riemann-Stieltjes integrals.- §2. Power series representation of analytic functions.- §3. Zeros of an analytic function.- §4. The index of a closed curve.- §5. Cauchy’s Theorem and Integral Formula.- §6. The homotopic version of Cauchy’s Theorem and simple connectivity.- §7. Counting zeros; the Open Mapping Theorem.- §8. Goursat’s Theorem.- V. Singularities.- §1. Classification of singularities.- §2. Residues.- §3. The Argument Principle.- VI. The Maximum Modulus Theorem.- §1. The Maximum Principle.- §2. Schwarz’s Lemma.- §3. Convex functions and Hadamard’s Three Circles Theorem.- §4. Phragm>én-Lindel>üf Theorem.- VII. Compactness and Convergence in ihe Space of Analytic Functions.- §1. The space of continuous functions C(G, ?).- §2. Spaccs of analytic functions.- §3. Spaccs of meromorphic functions.- §4. The Riemann Mapping Theorem.- §5. Weierstrass Factorization Theorem.- §6. Factorization of the sine function.- $7. The gamma function.- §8. The Riemann zeta function.- VIII. Runge’s Theorem.- §1. Runge’s Theorem.- §2. Simple connectedness.- §3.Mittag-Leffler’s Theorem.- IX. Analytic Continuation and Riemann Surfaces.- §1. Schwarz Reflection Principle.- $2. Analytic Continuation Along A Path.- §3. Monodromy Theorem.- §4. Topological Spaces and Neighborhood Systems.- $5. The Sheaf of Germs of Analytic Functions on an Open Set.- $6. Analytic Manifolds.- §7. Covering spaccs.- X. Harmonic Functions.- §1. Basic Properties of harmonic functions.- §2. Harmonic functions on a disk.- §3. Subharmonic and superharmonic functions.- §4. The Dirichlet Problem.- §5. Green’s Functions.- XI. Entire Functions.- §1. Jensen’s Formula.- §2. The genus and order of an entire function.- §3. Hadamard Factorization Theorem.- XII. The Range of an Analytic Function.- §1. Bloch’s Theorem.- §2. The Little Picard Theorem.- §3. Schottky’s Theorem.- §4. The Great Picard Theorem.- Appendix A: Calculus for Complex Valued Functions on an Interval.- Appendix B: Suggestions for Further Study and Bibliographical Notes.- References.- List of Symbols.

Reviews

This book presents a basic introduction to complex analysis in both an interesting and a rigorous manner. It contains enough material for a full year's course, and the choice of material treated is reasonably standard and should be satisfactory for most first courses in complex analysis. The approach to each topic appears to be carefully thought out both as to mathematical treatment and pedagogical presentation, and the end result is a very satisfactory book for classroom use or self-study. --MathSciNet


This book presents a basic introduction to complex analysis in both an interesting and a rigorous manner. It contains enough material for a full year's course, and the choice of material treated is reasonably standard and should be satisfactory for most first courses in complex analysis. The approach to each topic appears to be carefully thought out both as to mathematical treatment and pedagogical presentation, and the end result is a very satisfactory book for classroom use or self-study. --MathSciNet


Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List