|
![]() |
|||
|
||||
OverviewFull Product DetailsAuthor: Robert Steinberger-Wilckens (Chair in Fuel Cell and Hydrogen Research, Centre for Doctoral Training in Fuel Cells and Their Fuels, School of Chemical Engineering, University of Birmingham, UK) , Thomas Von Unwerth (Head, Department of Advanced Powertrains, Faculty of Mechanical Engineering, Chemnitz University of Technology, Germany) , John Jostins (Professor of Sustainable Transport and Design, Coventry University, UK)Publisher: Elsevier Science Publishing Co Inc Imprint: Academic Press Inc ISBN: 9780128191569ISBN 10: 0128191562 Pages: 352 Publication Date: 01 February 2022 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Forthcoming Availability: Not yet available ![]() This item is yet to be released. You can pre-order this item and we will dispatch it to you upon its release. Table of ContentsReviewsAuthor InformationRobert Steinberger-Wilckens is Professor for Fuel Cell and Hydrogen research in Chemical Engineering. He is director of the research Fuel Cell and Hydrogen group and the Centre for Doctoral Training Fuel Cells and their Fuels, which is run by the universities of Birmingham, Nottingham, and Loughborough, Imperial College, and University College of London. He works and has worked in many areas across the fields of renewable energies, energy efficiency, fuel cells, hydrogen production and distribution, as well as electric vehicles. Currently, his main areas of interest include Solid Oxide Fuel Cells, high temperature electrolysis (SOE) and reversible fuel cells (SOC) with methane synthesis, intermediate temperature polymer fuel cells, and market introduction of fuel cells and fuel cell vehicles. He has a total of over 200 publications in journals, books, and conference proceedings and is a regular peer reviewer for a large number of journals, as well as international funding programmes and publishing houses. He is member of the strategic advisory bodies for EPSRC, the EU Fuel Cell and Hydrogen Joint Undertaking, and the European Fuel Cell Forum. Professor Steinberger-Wilckens coordinates the modules Conventional Energy and Renewable Energy and Energy Storage for 2nd Year students and the module Introduction to Fuel Cell and Hydrogen Technologies for 4th Year and CDT students. Head, Department of Advanced Powertrains, Faculty of Mechanical Engineering, Chemnitz University of Technology, Germany Professor Thomas von Unwerth is in charge of the Department of Advanced Powertrains at the Faculty of Mechanical Engineering at Chemnitz University of Technology. He is also a lecturer at the University of Hannover. After finishing his mechanical engineering studies at TU Dortmund University, he obtained his PhD at the same institution and went to work in the industry. During that period, Prof. von Unwerth was director of two fuel cell projects at Volkswagen, after having worked there for several years as development engineer for fuel cells. John Jostins is professor of Sustainable Transport and Design at Coventry University, UK. He holds a BA Fine Art and a MA Design and Digital Media. His industrial experience includes working in motorsport and special effects in the film industry. From 1995, he became interested in sustainable design and was prompted (by the poor air quality in London where he was working) to start investigations into urban transport. Experience in motorsport gave him a good background in engineering lightweight structures and this, coupled with an interest in electric drive and hydrogen fuel cells, allowed him to pursue the goal of designing useful urban mobility devices with zero emissions. He has been researching into alternative, zero emissions transport and new mobility since 1996, focusing on designs for vehicles for urban scenarios where congestion and air quality tend to be worst. In that time, Prof. Jostins has founded a new enterprise called Microcab Industries Ltd. (an SME). Concentrating on hydrogen fuel cell electric drivetrains married to lean weight vehicle structures, 3 complete vehicle designs and a total of 14 operational vehicles have been built and demonstrated in trials. Tab Content 6Author Website:Countries AvailableAll regions |