|
![]() |
|||
|
||||
OverviewAdvanced spectroscopic techniques allow the probing of very small systems and very fast phenomena, conditions that can be considered ""extreme"" at the present status of our experimentation and knowledge. Quantum dots, nanocrystals and single molecules are examples of the former and events on the femtosecond scale examples of the latter. The purpose of this book is to examine the realm of phenomena of such extreme type and the techniques that permit their investigations. Each author has developed a coherent section of the program starting at a somewhat fundamental level and ultimately reaching the frontier of knowledge in the field in a systematic and didactic fashion. The formal lectures are complemented by additional seminars. Full Product DetailsAuthor: Baldassare Di Bartolo , Ottavio FortePublisher: Springer-Verlag New York Inc. Imprint: Springer-Verlag New York Inc. Edition: 2005 ed. Volume: 168 Dimensions: Width: 15.60cm , Height: 4.10cm , Length: 23.20cm Weight: 2.780kg ISBN: 9781402027499ISBN 10: 1402027494 Pages: 756 Publication Date: 17 February 2005 Audience: Professional and scholarly , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of ContentsPREFACE LECTURES INVESTIGATING PHYSICAL SYSTEMS WITH OPTICAL SPECTROSCOPY ( Baldassare Di Bartolo) Abstract 1. Introduction 2. Interaction of Radiation with Atoms and Molecules Acknowledgements References 2. LIGHT-MATTER INTERACTIONS ON THE FEMTO-SECOND TIME SCALE (Chris A.D. Roeser and Eric Mazur) Abstract 1. Light-matter Interactions 2. Ultrafast Dynamics of Solids under Intense Photoexcitation 3. Nonlinear Optical Properties 4. Ultrafast Materials Science 5. Summary Notes References 3. PHOTONS AND PHOTON STATISTICS FROM INCANDESCENT LIGHT TO LASERS (Ralph v. Baltz) 1. Introduction 2. Nature of Light 3. Classical Description of the EMF: Waves 4. Quantum Theory of Light: Photons 5. Optical Devices and Measurements 6. Outlook 7. Acknowledgements References Solutions to Problems CARRIER-WAVE NONLINEAR OPTICS (Martin Wegener) Introduction Some Aspects of Few-Cycle Laser Pulses From Mode-Locked Oscillators How Intense is the Light Field? Carrier-Wave Rabi Flopping of Electrons in Semiconductors 'Offset-Resonant' Carrier-Wave Nonlinear Optics of Electrons in Semiconductors Attosecond Pulses and Interactions of Intense Laser Fields with Atoms, Electrons and the Vacuum Summary Acknowledgements References Solutions of Exercises Important Symbols and Constants Index 13. Appendice 5. CAROTENOID EXCITED STATES-PHOTOPHYSICS, ULTRAFAST DYNAMICS AND PHOTOSYNTHETIC FUNCTIONS (Tomáš Polívka and Villy Sundström) 1. Introduction 2. Excitedstate structure of carotenoid molecules 3. Excited states of Carotenoids in Pigment Protein complexes Acknowledgements References SPECTROSCOPY OF QUANTUM WELLS AND SUPERLATTICES ( Claus Klingshirn) Abstract Prolog Introduction to Electronic Properties Quantum Wells and Superlattices Interband Spectroscopy Intersuperband Transitions Phonons in Bulk Semiconductors Phonons in Superlattices Conclusion and Outlook Acknowledgements References 7. LASERS FOR FRONTIER SPECTROSCOPY (Giuseppe Baldacchini) Abstract Introduction The rise of lasers Spectroscopy with lasers Advancements of laser and spectroscopy 5. Conclusions Acknowledgement References COHERENT SPECTROSCOPY OF STRATIFIED SEMICONDUCTOR MICRO- AND NANOSTRUCTURES ( Vadim Lyssenko) Introduction Maxwell’s equations Transmission and Reflectivity Multiple-beam interference Refraction and reflection at the surface of an absorptive medium Absorptive Fabry-Pérot interferometer Basic physics of microcavities Angle-dependent properties Electron envelope wavefunctions Y (z) Acknowledgements References 9. CONSEQUENCES OF EXTREME PHOTON CONFINEMENT IN MICRO-CAVITIES: I. ULTRA-SENSITIVE DETECTION OF PERTURBATIONS BY BIO-MOLECULES (Stephen Arnold, Mayumi Noto, and Frank Vollmer) Abstract Introduction Simple Considerations 3. Theoretical Approach 4. Experimental Insights which grow out of the Fig.3 5. First Order Perturbation Theory: Spherically Symmetric Layer 6.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |