Fracture Mechanics of Ceramics: Active Materials, Nanoscale Materials, Composites, Glass, and Fundamentals

Author:   R.C. Bradt ,  D. Munz ,  M. Sakai ,  Ken W. White
Publisher:   Springer-Verlag New York Inc.
Edition:   Softcover reprint of hardcover 1st ed. 2005
Volume:   14
ISBN:  

9781441936929


Pages:   636
Publication Date:   03 February 2011
Format:   Paperback
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Our Price $789.36 Quantity:  
Add to Cart

Share |

Fracture Mechanics of Ceramics: Active Materials, Nanoscale Materials, Composites, Glass, and Fundamentals


Overview

The 8th International Symposium on fracture mechanics of ceramics was held in on the campus of the University of Houston, Houston, TX, USA, on February 25-28, 2003. With the natural maturing of the fields of structural ceramics, this symposium focused on nano-scale materials, composites, thin films and coatings as well as glass. The symposium also addressed new issues on fundamentals of fracture mechanics and contact mechanics, and a session on reliability and standardization.

Full Product Details

Author:   R.C. Bradt ,  D. Munz ,  M. Sakai ,  Ken W. White
Publisher:   Springer-Verlag New York Inc.
Imprint:   Springer-Verlag New York Inc.
Edition:   Softcover reprint of hardcover 1st ed. 2005
Volume:   14
Weight:   1.215kg
ISBN:  

9781441936929


ISBN 10:   1441936920
Pages:   636
Publication Date:   03 February 2011
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Table of Contents

Contact Mechanics.- Atomic Force Microscopy at Ultrasonic Frequencies.- Indentation Size Effect on the Hardness of Zirconia Polycrystals.- Indentation Fracture, Acoustic Emission and Modelling of the Mechanical Properties of Thin Ceramic Coatings.- Nanoindentation, Nanoscratch and Nanoimpact Testing of Silicon-Based Materials with Nanostructured Surfaces.- Microstructural Control of Indentation Crack Extension under Externally Applied Stress.- Instrumented Hardness Test on Alumina Ceramics and Single Crystal with Spherical Indenter.- Glass.- Controlling the Fragmentation Behavior of Stressed Glass.- Elasto-Plastic Behavior of Glassy Carbon and Silica Glass by Nano-Indentation with Spherical Tipped Indenter.- Scratch Test for Evaluation of Surface Damage in Glass.- Shear Driven Damage and Internal Friction in Indentation Loading of a Glass-Ceramic.- Indentation and Scratching of Glass: Load, Composition and Temperature Effects.- Effects of Tin on the Physical Properties and Crack Growth in Soda-Lime-Silica Float Glass.- Indentation Size Effect for Glasses: Yes, There is a Fracture Contribution.- Fracture of Nano-Scale Materials.- Slow Crack Propagation in Ceramics at the Nano- and Micro-Scale: Effect of the Microstructure.- Toughening and Strengthening Mechanisms in Nanocomposites Based on Dislocation Activity.- Composites.- Creep Behavior and Mechanism for CMCs with Continuous Ceramic Fibers.- Strain Accumulation and Damage Evolution During Creep of SiCf/SiC Composites.- Modelling Multilayer Damage in Cross-ply Ceramic Matrix Composites.- Quantification of Toughness Increase Due to Metal Particles in Glass Matrix Composites.- Fracture Resistance of Hybrid Glass Matrix Composite and Its Degradation Due to Thermal Ageing and Thermal Shock.- Creep Investigation of SiCf-SiBC Composites.- Fracture Toughness of BaTiO3-MgO Composites Sintered by Spark Plasma Sintering.- Fracture Toughness of BaTiO3 and BaTiO3-Al2O3 Composite under Electric Field.- Room Temperature Post-Fracture Tensile (PFT) Study of Two Fiber-Reinforced Ceramic Matrix Composites with a “Strong” Fiber/Matrix Interface.- A FE Model of Carbon/Carbon Composite Fracture.- Fracture Fundamentals.- Tailoring the Composition of Self-Reinforced Silicon Nitride Ceramics to Enhance Mechanical Behavior.- Nonlinear Fracture of a Polycrystalline Graphite — Size-Effect Law and Irwin’s Similarity.- Fragmentation of Ceramics in Rapid Expansion Mode.- Experimental Approach to Microfracture Process of Ceramics under Thermal Shock.- Finite Element Analysis of Crack-Path Selection in a Brick and Mortar Structure.- Investigation of Crack Growth Process in Dense Hydroxyapatite Using the Double Torsion Method.- Crack Propagation Behavior of Alumina with Different Grain Sizes under Static and Cyclic Fatigue.- Effects of Pore/Grain-Size Interaction and Porosity on the Fracture of Electroceramics.- Fracture of Coatings.- Fracture Behaviour of Plasma Sprayed Thermal Barrier Coatings.- Particle Impact Damage and Point Load-Induced Fracture Behavior in Zirconia Plasma Spray Coating Film.- Model I, Mode II, and Mixed-Mode Fracture of Plasma-Sprayed Thermal Barrier Coatings at Ambient and Elevated Temperatures.- Ferroelectric Materials.- Modeling of Fracture in Ferroelastic Ceramics.- Strength and Reliability of Lead Zirconate Titanate Ceramics.- Reliability Prediction, Standardization and Design.- Standard Reference Material 2100: Fracture Toughness of Ceramics.- Measuring the Real Fracture Toughness of Ceramics: ASTM C 1421.- Predicting the Reliability of Brittle Material Structures Subjected toTransient Proof Test and Service Loading.- Estimation and Simulation of Slow Crack Growth Parameters from Constant Stress Rate Data.- On Integrity of Flexible Displays.- Fracture of Conductive Cracks in Poled and Depoled PZT-4 Ceramics.- Increasing Resistance to Low Temperature Ageing Degradation of Y-TZP by Surface Modification.

Reviews

Author Information

Tab Content 6

Author Website:  

Countries Available

All regions
Latest Reading Guide

NOV RG 20252

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List