|
![]() |
|||
|
||||
OverviewThis heavily class-tested book is an exposition of the theoretical foundations of hyperbolic manifolds. It is a both a textbook and a reference. A basic knowledge of algebra and topology at the first year graduate level of an American university is assumed. The first part is concerned with hyperbolic geometry and discrete groups. The second part is devoted to the theory of hyperbolic manifolds. The third part integrates the first two parts in a development of the theory of hyperbolic orbifolds. Each chapter contains exercises and a section of historical remarks. A solutions manual is available separately. Full Product DetailsAuthor: John RatcliffePublisher: Springer-Verlag New York Inc. Imprint: Springer-Verlag New York Inc. Edition: Second Edition 2006 Volume: 149 Dimensions: Width: 15.60cm , Height: 4.20cm , Length: 23.50cm Weight: 2.830kg ISBN: 9780387331973ISBN 10: 0387331972 Pages: 782 Publication Date: 23 August 2006 Audience: Professional and scholarly , Professional & Vocational Replaced By: 9783030315962 Format: Hardback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of ContentsEuclidean Geometry.- Spherical Geometry.- Hyperbolic Geometry.- Inversive Geometry.- Isometries of Hyperbolic Space.- Geometry of Discrete Groups.- Classical Discrete Groups.- Geometric Manifolds.- Geometric Surfaces.- Hyperbolic 3-Manifolds.- Hyperbolic n-Manifolds.- Geometrically Finite n-Manifolds.- Geometric Orbifolds.ReviewsThe author provides a book that will serve both as a reference to experts in the area for many years to come, and potentially as a textbook to introduce this area to the more sophisticated student!This book has a tremendous amount of depth. In addition to the careful and complete exposition, each chapter ends with a fascinating section containing historical notes, putting many of the ideas into context. This volume will play an important role in the continuing development of this fascinating field. - Colin Adams, Mathematical Reviews A detailed and extensive study of geometric manifolds, esp. of hyperbolic ones, is preceded by an expose of foundations of non-Euclidean spaces, of their models and of related groups of transformations. - A. Szybiak, Zentralblatt !This book is an excellent overview of a particular branch of non-Euclidean geometry called hyperbolic geometry. There are good exercises in the book, and the author gives a detailed history of the subjects after the end of each chapter. - Lee Carlson, reader review from Amazon.com "From the reviews of the second edition: ""Designed to be useful as both textbook and a reference, this book renders a real service to the mathematical community by putting together the tools and prerequisites needed to enter the territory of Thurston’s formidable theory of hyperbolic 3-mainfolds … . Every chapter is followed by historical notes, with attributions to the relevant literature, both of the originators of the idea present in the chapter and of modern presentation thereof. The bibliography contains 463 entries."" (Victor V. Pambuccian, Zentralblatt MATH, Vol. 1106 (8), 2007)" From the reviews of the second edition: <p> Designed to be useful as both textbook and a reference, this book renders a real service to the mathematical community by putting together the tools and prerequisites needed to enter the territory of Thurstona (TM)s formidable theory of hyperbolic 3-mainfolds a ] . Every chapter is followed by historical notes, with attributions to the relevant literature, both of the originators of the idea present in the chapter and of modern presentation thereof. The bibliography contains 463 entries. (Victor V. Pambuccian, Zentralblatt MATH, Vol. 1106 (8), 2007) Author InformationTab Content 6Author Website:Countries AvailableAll regions |