Forecasting with Artificial Intelligence: Theory and Applications

Author:   Mohsen Hamoudia ,  Spyros Makridakis ,  Evangelos Spiliotis
Publisher:   Springer International Publishing AG
ISBN:  

9783031358814


Pages:   412
Publication Date:   08 October 2024
Format:   Paperback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $527.97 Quantity:  
Add to Cart

Share |

Forecasting with Artificial Intelligence: Theory and Applications


Add your own review!

Overview

This book is a comprehensive guide that explores the intersection of artificial intelligence and forecasting, providing the latest insights and trends in this rapidly evolving field. The book contains fourteen chapters covering a wide range of topics, including the concept of AI, its impact on economic decision-making, traditional and machine learning-based forecasting methods, challenges in demand forecasting, global forecasting models, meta-learning and feature-based forecasting, ensembling, deep learning, scalability in industrial and optimization applications, and forecasting performance evaluation. With key illustrations, state-of-the-art implementations, best practices, and notable advances, this book offers practical insights into the theory and practice of AI-based forecasting. This book is a valuable resource for anyone involved in forecasting, including forecasters, statisticians, data scientists, business analysts, or decision-makers.

Full Product Details

Author:   Mohsen Hamoudia ,  Spyros Makridakis ,  Evangelos Spiliotis
Publisher:   Springer International Publishing AG
Imprint:   Palgrave Macmillan
ISBN:  

9783031358814


ISBN 10:   3031358813
Pages:   412
Publication Date:   08 October 2024
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

Part I. Artificial intelligence : present and future.- 1. Human intelligence (HI) versus artificial intelligence (AI) and intelligence augmentation (IA).- 2. Expecting the future: How AI's potential performance will shape current behavior.- Part II. The status of machine learning methods for time series and new products forecasting.- 3. Forecasting with statistical, machine learning, and deep learning models: Past, present and future.- 4. Machine Learning for New Product Forecasting.- Part III. Global forecasting models.- 5. Forecasting in Big Data with Global Forecasting Models.- 6. How to leverage data for Time Series Forecasting with Artificial Intelligence models: Illustrations and Guidelines for Cross-learning.- 7. Handling Concept Drift in Global Time Series Forecasting.- 8. Neural network ensembles for univariate time series forecasting.- Part IV. Meta-learning and feature-based forecasting.- 9. Large scale time series forecasting with meta-learning.- 10. Forecasting large collections of time series: feature-based methods.- Part V. Special applications.- 11. Deep Learning based Forecasting: a case study from the online fashion industry.- 12. The intersection of machine learning with forecasting and optimisation: theory and applications.- 13. Enhanced forecasting with LSTVAR-ANN hybrid model: application in monetary policy and inflation forecasting.- 14. The FVA framework for evaluating forecasting performance. 

Reviews

Author Information

Mohsen Hamoudia is CEO since 2020 of PREDICONSULT (Data and Predictive Analytics), Paris. He is a consultant to several consulting companies in Europe and the US. His research is primarily focused on economics and empirical aspects of forecasting in air transportation, telecommunications, IT (Information and Technologies), social networking, and innovation and new technologies Spyros Makridakis is a Professor at the University of Nicosia and the founder of the Makridakis Open Forecasting Center (MOFC). He is also an Emeritus Professor at INSEAD, he joined in 1970. He has authored/co-authored, 27 books/special and more than 360 articles. He was the founding editor-in-chief of the Journal of Forecasting and the International Journal of Forecasting and is the organizer of the renowned M (Makridakis) competitions. Evangelos Spiliotis is a Research Fellow at the Forecasting & Strategy Unit, National Technical University of Athens. Hisresearch focuses on time series forecasting with machine learning, while his work on tools for management support. He has co-organized the M4, M5, and M6 forecasting competitions.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

RGJUNE2025

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List