|
![]() |
|||
|
||||
OverviewThe authors study the relationship between foliation theory and differential geometry and analysis on Cauchy-Riemann (CR) manifolds. The main objects of study are transversally and tangentially CR foliations, Levi foliations of CR manifolds, solutions of the Yang-Mills equations, tangentially Monge-Ampere foliations, the transverse Beltrami equations, and CR orbifolds. The novelty of the authors' approach consists in the overall use of the methods of foliation theory and choice of specific applications. Examples of such applications are Rea's holomorphic extension of Levi foliations, Stanton's holomorphic degeneracy, Boas and Straube's approximately commuting vector fields method for the study of global regularity of Neumann operators and Bergman projections in multi-dimensional complex analysis in several complex variables, as well as various applications to differential geometry. Many open problems proposed in the monograph may attract the mathematical community and lead to further applications of Full Product DetailsAuthor: Elisabetta Barletta , Sorin Dragomir , Krishan L. DuggalPublisher: American Mathematical Society Imprint: American Mathematical Society Edition: illustrated edition Volume: No. 140 Weight: 0.635kg ISBN: 9780821843048ISBN 10: 0821843044 Pages: 256 Publication Date: 29 January 2008 Audience: College/higher education , Undergraduate , Postgraduate, Research & Scholarly Format: Hardback Publisher's Status: Active Availability: Temporarily unavailable ![]() The supplier advises that this item is temporarily unavailable. It will be ordered for you and placed on backorder. Once it does come back in stock, we will ship it out to you. Table of ContentsReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |