|
![]() |
|||
|
||||
OverviewThe monograph provides the first full discussion of flag-transitive Steiner designs. This is a central part of the study of highly symmetric combinatorial configurations at the interface of several mathematical disciplines, like finite or incidence geometry, group theory, combinatorics, coding theory, and cryptography. In a sufficiently self-contained and unified manner the classification of all flag-transitive Steiner designs is presented. This recent result settles interesting and challenging questions that have been object of research for more than 40 years. Its proof combines methods from finite group theory, incidence geometry, combinatorics, and number theory. The book contains a broad introduction to the topic, along with many illustrative examples. Moreover, a census of some of the most general results on highly symmetric Steiner designs is given in a survey chapter. The monograph is addressed to graduate students in mathematics and computer science as well as established researchers in design theory, finite or incidence geometry, coding theory, cryptography, algebraic combinatorics, and more generally, discrete mathematics. Full Product DetailsAuthor: Michael Huber, Ph. Dr Dr Dr Dr Dr Dr Dr Dr Dr Dr Dr PH. PH. PH.Publisher: Springer Imprint: Springer Dimensions: Width: 24.40cm , Height: 0.70cm , Length: 17.00cm Weight: 0.227kg ISBN: 9783034600118ISBN 10: 3034600119 Pages: 136 Publication Date: 16 April 2009 Audience: General/trade , General Format: Undefined Publisher's Status: Unknown Availability: Out of stock ![]() Table of ContentsReviewsThis monograph provides an excellent development of the existence and nonexistenceof flag-transitive and other symmetric Steiner t-designs. In particular, it develops acomplete classification of all flag-transitive Steiner t-designs for strength t at least three.The topic is a beautiful mixture of algebra and combinatorics, and it impinges onmany applications areas. Of particular value is the material providing the necessarybackground in group theory, incidence geometry, number theory, and combinatorialdesign theory to support a complete exposition of the many results. These form thefocus of the first three chapters. Chapter 4 then develops results on symmetric actionsof groups on Steiner systems, and provides many helpful examples. Chapter 5 thenstates the main existence result for flag-transitive Steiner systems, and places this inthe context of related existence results for highly symmetric actions. Chapters 6 through10 fill in the details of the existence proof. Steiner quadruple s Author InformationTab Content 6Author Website:Countries AvailableAll regions |