First-Order Methods in Optimization

Author:   Amir Beck
Publisher:   Society for Industrial & Applied Mathematics,U.S.
ISBN:  

9781611974980


Pages:   484
Publication Date:   30 November 2017
Format:   Paperback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $204.60 Quantity:  
Add to Cart

Share |

First-Order Methods in Optimization


Add your own review!

Overview

The primary goal of this book is to provide a self-contained, comprehensive study of the main ?rst-order methods that are frequently used in solving large-scale problems. First-order methods exploit information on values and gradients/subgradients (but not Hessians) of the functions composing the model under consideration. With the increase in the number of applications that can be modeled as large or even huge-scale optimization problems, there has been a revived interest in using simple methods that require low iteration cost as well as low memory storage. The author has gathered, reorganized, and synthesized (in a unified manner) many results that are currently scattered throughout the literature, many of which cannot be typically found in optimization books. First-Order Methods in Optimization offers comprehensive study of first-order methods with the theoretical foundations; provides plentiful examples and illustrations; emphasizes rates of convergence and complexity analysis of the main first-order methods used to solve large-scale problems; and covers both variables and functional decomposition methods.

Full Product Details

Author:   Amir Beck
Publisher:   Society for Industrial & Applied Mathematics,U.S.
Imprint:   Society for Industrial & Applied Mathematics,U.S.
Weight:   1.020kg
ISBN:  

9781611974980


ISBN 10:   1611974984
Pages:   484
Publication Date:   30 November 2017
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

Preface; Chapter 1: Vector Spaces; Chapter 2: Extended Real-Value Functions; Chapter 3: Subgradients; Chapter 4: Conjugate Functions; Chapter 5: Smoothness and Strong Convexity; Chapter 6: The Proximal Operator; Chapter 7: Spectral Functions; Chapter 8: Primal and Dual Projected Subgradient Methods; Chapter 9: Mirror Descent; Chapter 10: The Proximal Gradient Method; Chapter 11: The Block Proximal Gradient Method; Chapter 12: Dual-Based Proximal Gradient Methods; Chapter 13: The Generalized Conditional Gradient Method; Chapter 14: Alternating Minimization; Chapter 15: ADMM; Appendix A: Strong Duality and Optimality Conditions; Appendix B: Tables; Appendix C: Symbols and Notation; Appendix D: Bibliographic Notes; Bibliography; Index.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

RGJUNE2025

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List