Financial Econometric Modeling

Author:   Stan Hurn (, Queensland University of Technology) ,  Vance L. Martin (, Universtiy of Melbourne) ,  Jun Yu (, Singapore Management University) ,  Peter C.B. Phillips (, Singapore Management University)
Publisher:   Oxford University Press Inc
ISBN:  

9780190857066


Pages:   640
Publication Date:   21 May 2020
Format:   Paperback
Availability:   To order   Availability explained
Stock availability from the supplier is unknown. We will order it for you and ship this item to you once it is received by us.

Our Price $175.95 Quantity:  
Add to Cart

Share |

Financial Econometric Modeling


Add your own review!

Overview

Full Product Details

Author:   Stan Hurn (, Queensland University of Technology) ,  Vance L. Martin (, Universtiy of Melbourne) ,  Jun Yu (, Singapore Management University) ,  Peter C.B. Phillips (, Singapore Management University)
Publisher:   Oxford University Press Inc
Imprint:   Oxford University Press Inc
Dimensions:   Width: 23.10cm , Height: 3.10cm , Length: 19.10cm
Weight:   1.089kg
ISBN:  

9780190857066


ISBN 10:   0190857064
Pages:   640
Publication Date:   21 May 2020
Audience:   College/higher education ,  Tertiary & Higher Education
Format:   Paperback
Publisher's Status:   Active
Availability:   To order   Availability explained
Stock availability from the supplier is unknown. We will order it for you and ship this item to you once it is received by us.

Table of Contents

I: Fundamentals1. Prices and Returns1.1 What is Financial Econometrics?1.2 Financial Assets1.3 Equity Prices and Returns1.4 Stock Market Indices1.5 Bond Yields1.6 Exercises2. Financial Data2.1irst Look at the Data2.2 Summary Statistics2.3 Percentiles and Value at Risk2.4 The Efficient Market Hypothesis2.5 Exercises3. Linear Regression3.1 The Capital Asset Pricing Model3.2 Multi-factor CAPM3.3 Properties of Ordinary Least Squares3.4 Diagnostics3.5 Measuring Portfolio Performance3.6 Minimum Variance Portfolios3.7 Event Analysis3.8 Exercises4. Stationary Dynamics4.1 Stationarity4.2 Univariate Time Series Models4.3 Autocorrelation and Partial Autocorrelations4.4 Mean Aversion and Reversion in Returns4.5 Vector Autoregressive Models4.6 Analysing VARs4.7 Diebold-Yilmaz Spillover Index4.8 Exercises5. Nonstationarity5.1 The RandomWalk with Drift5.2 Characteristics of Financial Data5.3 Dickey-Fuller Methods and Unit Root Testing5.4 Beyond the Simple Unit Root Framework5.5 Asset Price Bubbles5.6 Exercises6. Cointegration6.1 The Present Value Model and Cointegration6.2 Vector Error Correction Models6.3 Estimation6.4 Cointegration Testing6.5 Parameter Testing6.6 Cointegration and the Gordon Model6.7 Cointegration and the Yield Curve6.8 Exercises7. Forecasting7.1 Types of Forecasts7.2 Forecasting Univariate Time Series Models7.3 Forecasting Multivariate Time Series Models7.4 Combining Forecasts.7.5 Forecast Evaluation Statistics7.6 Evaluating the Density of Forecast Errors7.7 Regression Model Forecasts7.8 Predicting the Equity Premium7.9 Stochastic Simulation of Value at Risk7.10 ExercisesII. Methods8. Instrumental Variables8.1 The Exogeneity Assumption8.2 Estimating the Risk-Return Tradeoff8.3 The General Instrumental Variables Estimator8.4 Testing for Endogeneity8.5 Weak Instruments8.6 Consumption CAPM8.7 Endogeneity and Corporate Finance8.8 Exercises9. Generalised Method of Moments9.1 Single Parameter Models9.2 Multiple Parameter Models9.3 Over-Identified Models9.4 Estimation9.5 Properties of the GMM Estimator9.6 Testing9.7 Consumption CAPM Revisited9.8 The CKLS Model of Interest Rates9.9 Exercises10. Maximum Likelihood10.1 Distributions in Finance10.2 Estimation by Maximum Likelihood10.3 Applications10.4 Numerical Methods10.5 Properties10.6 Quasi Maximum Likelihood Estimation10.7 Testing10.8 Exercises11. Panel Data Models11.1 Types of Panel Data11.2 Reasons for Using Panel Data11.3 Two Introductory Panel Models11.4 Fixed and Random Effects Panel Models11.5 Dynamic Panel Models11.6 Nonstationary Panel Models11.7 Exercises12. Latent Factor Models12.1 Motivation12.2 Principal Components12.3atent Factor CAPM12.4 Dynamic Factor Models: the Kalman Filter12.5arametric Approach to Factors12.6 Stochastic Volatility12.7 ExercisesIII: Topics13. Univariate GARCH Models13.1 Volatility Clustering.13.2 The GARCH Model13.3 Asymmetric Volatility Effects13.4 Forecasting13.5 The Risk-Return Tradeoff.13.6 Heatwaves and Meteor Showers13.7 Exercises14. Multivariate GARCH Models14.1 Motivation14.2 Early Covariance Estimators14.3 The BEKK Model14.4 The DCC Model14.5 Optimal Hedge Ratios14.6 Capital Ratios and Financial Crises14.7 Exercises15. Realised Variance and Covariance15.1 High Frequency Data15.2 Realised Variance15.3 Integrated Variance15.4 Microstructure Noise15.5 Bipower Variation and Jumps15.6 Forecasting15.7 The Realised GARCH Model15.8 Realised Covariance15.9 Exercises16. Microstructure Models16.1 Characteristics of High Frequency Data16.2 Limit Order Book16.3 Bid Ask Bounce16.4 Information Content of Trades16.5 Modelling Price Movements in Trades16.6 Modelling Durations16.7 Modelling Volatility in Transactions Time16.8 Exercises17. Options17.1 Option Pricing Basics.17.2 The Black-Scholes Option Price Model17.3irst Look at Options Data17.4 Estimating the Black-Scholes Model17.5 Testing the Black-Scholes Model17.6 Option Pricing and GARCH Volatility17.7 The Melick-Thomas Option Price Model17.8 Nonlinear Option Pricing.17.9 Using Options to Estimate GARCH Models17.10 Exercises18. Extreme Values and Copulas18.1 Motivation.18.2 Evidence of Heavy Tails18.3 Extreme Value Theory18.4 Modelling Dependence using Copulas18.5 Properties of Copulas18.6 Estimating Copula Models18.7 MGARCH Model Using Copulas18.8 Exercises19. Concluding RemarksA. Mathematical PreliminariesA.1 Summation NotationA.2 Expectations OperatorA.3 DifferentiationA.4 Taylor Series ExpansionsA.5 Matrix AlgebraA.6 Transposition ofatrixA.7 Symmetric MatrixB. Properties of EstimatorsB.1 Finite Sample PropertiesB.2 Asymptotic PropertiesC. Linear Regression Model in Matrix NotationD. Numerical OptimisationE. Simulating CopulasAuthor indexSubject index

Reviews

Financial econometrics is the study and application of compelling econometric methods with a cogent financial purpose. This new book delivers a masterful introduction to financial econometrics at its best. It does so with enticing prose, motivating examples, utmost clarity and, ultimately, just the right balance of breadth and depth. In a world of big data and new technologies, not only does this rich treatment provide the fundamentals needed for more advanced explorations but also, in my view, the desire to explore further. To anyone new to this field, or to anyone who does not believe the field to be approachable and exciting, I say: this book will be an eye-opener. * Federico M. Bandi, James Carey Endowed Professor in Business, Johns Hopkins University * A comprehensive and long-overdue pedagogical treatment of financial econometrics * the only book to cover concepts, methodology, and empirical examples demonstrated with popular Stata and EViews software accessible to beginning students. The book is a self-contained first course, achieving the remarkable feat of an exhaustive introductory treatment that is inspiring, rigorous, and easy to read with clever organization into fundamentals, methods, and topics. A must-have reference source, perfect for teaching financial econometrics in masters courses or to graduate students with limited backgrounds. * Financial Econometric Modeling provides a broad introduction to financial econometrics, with an emphasis on applications and encouraging students to get their hands dirty from the very beginning. The authors cover a vast amount of material. The fact that all of the topics come with sample data sets for students to use * and all of the empirical work in the book can be replicated in EViews and Stata * I strongly recommend this textbook. It offers the perfect mix between solid bases and new developments, and between theoretical descriptions of tools and algorithms and a rich set of fully worked-out examples. * Massimo Guidolin, Professor of Finance, Bocconi University *


I strongly recommend this textbook. It offers the perfect mix between solid bases and new developments, and between theoretical descriptions of tools and algorithms and a rich set of fully worked-out examples. * Massimo Guidolin, Professor of Finance, Bocconi University * Financial Econometric Modeling provides a broad introduction to financial econometrics, with an emphasis on applications and encouraging students to get their hands dirty from the very beginning. The authors cover a vast amount of material. The fact that all of the topics come with sample data sets for students to use * and all of the empirical work in the book can be replicated in EViews and Stata * A comprehensive and long-overdue pedagogical treatment of financial econometrics * the only book to cover concepts, methodology, and empirical examples demonstrated with popular Stata and EViews software accessible to beginning students. The book is a self-contained first course, achieving the remarkable feat of an exhaustive introductory treatment that is inspiring, rigorous, and easy to read with clever organization into fundamentals, methods, and topics. A must-have reference source, perfect for teaching financial econometrics in masters courses or to graduate students with limited backgrounds. * Financial econometrics is the study and application of compelling econometric methods with a cogent financial purpose. This new book delivers a masterful introduction to financial econometrics at its best. It does so with enticing prose, motivating examples, utmost clarity and, ultimately, just the right balance of breadth and depth. In a world of big data and new technologies, not only does this rich treatment provide the fundamentals needed for more advanced explorations but also, in my view, the desire to explore further. To anyone new to this field, or to anyone who does not believe the field to be approachable and exciting, I say: this book will be an eye-opener. * Federico M. Bandi, James Carey Endowed Professor in Business, Johns Hopkins University *


Financial econometrics is the study and application of compelling econometric methods with a cogent financial purpose. This new book delivers a masterful introduction to financial econometrics at its best. It does so with enticing prose, motivating examples, utmost clarity and, ultimately, just the right balance of breadth and depth. In a world of big data and new technologies, not only does this rich treatment provide the fundamentals needed for more advanced explorations but also, in my view, the desire to explore further. To anyone new to this field, or to anyone who does not believe the field to be approachable and exciting, I say: this book will be an eye-opener. --Federico M. Bandi, James Carey Endowed Professor in Business, Johns Hopkins University A comprehensive and long-overdue pedagogical treatment of financial econometrics--the only book to cover concepts, methodology, and empirical examples demonstrated with popular Stata and EViews software accessible to beginning students. The book is a self-contained first course, achieving the remarkable feat of an exhaustive introductory treatment that is inspiring, rigorous, and easy to read with clever organization into fundamentals, methods, and topics. A must-have reference source, perfect for teaching financial econometrics in masters courses or to graduate students with limited backgrounds. --Eric Renault, C.V. Starr Professor of Economics, University of Warwick Financial Econometric Modeling provides a broad introduction to financial econometrics, with an emphasis on applications and encouraging students to get their hands dirty from the very beginning. The authors cover a vast amount of material. The fact that all of the topics come with sample data sets for students to use--and all of the empirical work in the book can be replicated in EViews and Stata--will be very attractive to many instructors and students. --Andrew Patton, Zelter Family Professor of Economics, Duke University I strongly recommend this textbook. It offers the perfect mix between solid bases and new developments, and between theoretical descriptions of tools and algorithms and a rich set of fully worked-out examples. --Massimo Guidolin, Professor of Finance, Bocconi University


Author Information

Stan Hurn, Professor of Econometrics at Queensland University of Technology.Vance L. Martin, Professor of Econometrics at the University of Melbourne.Peter C.B. Phillips, Sterling Professor of Economics at Yale University,Jun Yu, is Lee Kong Chian Professor of Economics and Finance at Singapore Management University and Lead Principal Investigator at the Centre for Research on the Economics of Aging (CREA).

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List