|
|
|||
|
||||
OverviewFiltering and system identification are powerful techniques for building models of complex systems. This book discusses the design of reliable numerical methods to retrieve missing information in models derived using these techniques. Emphasis is on the least squares approach as applied to the linear state-space model, and problems of increasing complexity are analyzed and solved within this framework, starting with the Kalman filter and concluding with the estimation of a full model, noise statistics and state estimator directly from the data. Key background topics, including linear matrix algebra and linear system theory, are covered, followed by different estimation and identification methods in the state-space model. With end-of-chapter exercises, MATLAB simulations and numerous illustrations, this book will appeal to graduate students and researchers in electrical, mechanical, and aerospace engineering. It is also useful for practitioners. Additional resources for this title, including solutions for instructors, are available online at www.cambridge.org/9780521875127. Full Product DetailsAuthor: Michel Verhaegen , Vincent VerdultPublisher: Cambridge University Press Imprint: Cambridge University Press ISBN: 9786610850730ISBN 10: 6610850739 Pages: 423 Publication Date: 26 April 2007 Audience: General/trade , General Format: Electronic book text Publisher's Status: Active Availability: Out of stock The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available. Table of ContentsReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |
||||