|
![]() |
|||
|
||||
OverviewFull Product DetailsAuthor: Qiang Yang , Lixin Fan , Han YuPublisher: Springer Nature Switzerland AG Imprint: Springer Nature Switzerland AG Edition: 1st ed. 2020 Volume: 12500 Weight: 0.456kg ISBN: 9783030630751ISBN 10: 3030630757 Pages: 286 Publication Date: 26 November 2020 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsPrivacy.- Threats to Federated Learning.- Rethinking Gradients Safety in Federated Learning.- Rethinking Privacy Preserving Deep Learning: How to Evaluate and Thwart Privacy Attacks.- Task-Agnostic Privacy-Preserving Representation Learning via Federated Learning.- Large-Scale Kernel Method for Vertical Federated Learning.- Towards Byzantine-resilient Federated Learning via Group-wise Robust Aggregation.- Federated Soft Gradient Boosting Machine for Streaming Data.- Dealing with Label Quality Disparity In Federated Learning.- Incentive.- FedCoin: A Peer-to-Peer Payment System for Federated Learning.- Efficient and Fair Data Valuation for Horizontal Federated Learning.- A Principled Approach to Data Valuation for Federated Learning.- A Gamified Research Tool for Incentive Mechanism Design in Federated Learning.- Budget-bounded Incentives for Federated Learning.- Collaborative Fairness in Federated Learning.- A Game-Theoretic Framework for Incentive Mechanism Design in Federated Learning.- Applications.- Federated Recommendation Systems.- Federated Learning for Open Banking.- Building ICU In-hospital Mortality Prediction Model with Federated Learning.- Privacy-preserving Stacking with Application to Cross-organizational Diabetes Prediction.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |