Federated Learning: A Comprehensive Overview of Methods and Applications

Author:   Heiko Ludwig ,  Nathalie Baracaldo
Publisher:   Springer Nature Switzerland AG
Edition:   2022 ed.
ISBN:  

9783030968953


Pages:   534
Publication Date:   08 July 2022
Format:   Hardback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $336.35 Quantity:  
Add to Cart

Share |

Federated Learning: A Comprehensive Overview of Methods and Applications


Add your own review!

Overview

Full Product Details

Author:   Heiko Ludwig ,  Nathalie Baracaldo
Publisher:   Springer Nature Switzerland AG
Imprint:   Springer Nature Switzerland AG
Edition:   2022 ed.
Weight:   0.975kg
ISBN:  

9783030968953


ISBN 10:   3030968952
Pages:   534
Publication Date:   08 July 2022
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

Reviews

Author Information

Heiko Ludwig is a Senior Manager, AI Platforms and a Principal Research Staff Member at IBM’s Almaden Research Center in San Jose, CA. Heiko coordinates the Federated Learning program at IBM Research and oversees the Distributed AI research area. His research contributed to different products, including IBM’s machine learning products. He is an ACM Distinguished Engineer and has more than 150 publications with more than 8000 citations. His technical work led to a number of technical awards by IBM and his numerous patents and patent applications received a designation as an IBM Master Inventor. Heiko is a co-editor in chief of the International Journal of Cooperative Information Systems and serves on the editorial boards of multiple journals. Heiko also serves regularly as program committee chair in conferences in the field. Heiko's wider interest is on large scale and cross-organizational AI systems and its related distributed systems, security and privacy research issues.Heiko received a doctorate in information systems from Otto-Friedrich-Universität Bamberg, Germany. Nathalie Baracaldo leads the AI Security and Privacy Solutions team and is a Research Staff Member at IBM’s Almaden Research Center in San Jose, CA. Nathalie is passionate about delivering machine learning solutions that are highly accurate, withstand adversarial attacks and protect data privacy. Nathalie has led her team to the design of IBM Federated Learning framework which is now part of the Watson Machine Learning product and continues to work on its expansion. In 2020, Nathalie received the IBM Master Inventor distinction for her contributions to the IBM Intellectual Property and innovation.  Nathalie also received the 2021 Corporate Technical Recognition, one of the highest recognitions provided to IBMers for breakthrough technical achievements that have led to notable market and industry success for IBM. This recognition was awarded for Nathalie's contribution to the Trusted AI Initiative. Nathalie has been invited to give multiple talks on federated learning, its challenges and opportunities. Nathalie has received four best paper awards and published in top-tier conferences and journals, obtaining more than 1300 Google scholar citations. Nathalie’s wider research interests include security and privacy, distributed systems and machine learning. Nathalie is also Associate Editor of the IEEE Transactions on Service Computing. Nathalie received her Ph.D. degree from the University of Pittsburgh in 2016.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List