Feature Extraction: Foundations and Applications

Author:   Isabelle Guyon ,  Steve Gunn ,  Masoud Nikravesh ,  Lofti A. Zadeh
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Edition:   Softcover reprint of the original 1st ed. 2006
Volume:   207
ISBN:  

9783662517710


Pages:   778
Publication Date:   30 April 2017
Format:   Paperback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $871.17 Quantity:  
Add to Cart

Share |

Feature Extraction: Foundations and Applications


Add your own review!

Overview

Full Product Details

Author:   Isabelle Guyon ,  Steve Gunn ,  Masoud Nikravesh ,  Lofti A. Zadeh
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Imprint:   Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Edition:   Softcover reprint of the original 1st ed. 2006
Volume:   207
Dimensions:   Width: 15.50cm , Height: 4.10cm , Length: 23.50cm
Weight:   1.623kg
ISBN:  

9783662517710


ISBN 10:   366251771
Pages:   778
Publication Date:   30 April 2017
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

An Introduction to Feature Extraction.- An Introduction to Feature Extraction.- Feature Extraction Fundamentals.- Learning Machines.- Assessment Methods.- Filter Methods.- Search Strategies.- Embedded Methods.- Information-Theoretic Methods.- Ensemble Learning.- Fuzzy Neural Networks.- Feature Selection Challenge.- Design and Analysis of the NIPS2003 Challenge.- High Dimensional Classification with Bayesian Neural Networks and Dirichlet Diffusion Trees.- Ensembles of Regularized Least Squares Classifiers for High-Dimensional Problems.- Combining SVMs with Various Feature Selection Strategies.- Feature Selection with Transductive Support Vector Machines.- Variable Selection using Correlation and Single Variable Classifier Methods: Applications.- Tree-Based Ensembles with Dynamic Soft Feature Selection.- Sparse, Flexible and Efficient Modeling using L 1 Regularization.- Margin Based Feature Selection and Infogain with Standard Classifiers.- Bayesian Support Vector Machines for Feature Ranking and Selection.- Nonlinear Feature Selection with the Potential Support Vector Machine.- Combining a Filter Method with SVMs.- Feature Selection via Sensitivity Analysis with Direct Kernel PLS.- Information Gain, Correlation and Support Vector Machines.- Mining for Complex Models Comprising Feature Selection and Classification.- Combining Information-Based Supervised and Unsupervised Feature Selection.- An Enhanced Selective Naïve Bayes Method with Optimal Discretization.- An Input Variable Importance Definition based on Empirical Data Probability Distribution.- New Perspectives in Feature Extraction.- Spectral Dimensionality Reduction.- Constructing Orthogonal Latent Features for Arbitrary Loss.- Large Margin Principles for Feature Selection.- Feature Extraction for Classification of Proteomic Mass Spectra: A Comparative Study.- Sequence Motifs: Highly Predictive Features of Protein Function.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List