|
![]() |
|||
|
||||
OverviewIt is commonly accepted that the majority of engineering failures happen due to fatigue or fracture phenomena. Adhesive bonding is a prevailing joining technique, widely used for critical connections in composite structures. However, the lack of knowledge regarding fatigue and fracture behaviour, and the shortage of tools for credible fatigue design, hinders the potential benefits of adhesively bonded joints. The demand for reliable and safe structures necessitates deep knowledge in this area in order to avoid catastrophic structural failures. This book reviews recent research in the field of fatigue and fracture of adhesively-bonded composite joints. The first part of the book discusses the experimental investigation of the reliability of adhesively-bonded composite joints, current research on understanding damage mechanisms, fatigue and fracture, durability and ageing as well as implications for design. The second part of the book covers the modelling of bond performance and failure mechanisms in different loading conditions. Full Product DetailsAuthor: Anastasios P. Vassilopoulos (Senior Scientist, Ecole Polytechnique Federale de Lausanne, Switzerland)Publisher: Elsevier Science & Technology Imprint: Woodhead Publishing Ltd Dimensions: Width: 15.20cm , Height: 2.80cm , Length: 22.90cm Weight: 0.730kg ISBN: 9780081015254ISBN 10: 0081015259 Pages: 552 Publication Date: 30 October 2017 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of ContentsReviewsAuthor InformationDr Anastasios P. Vassilopoulos is a Senior Scientist (MER) in the Composite Construction Laboratory (CCLab) at the Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland. He has an international reputation for his work on fatigue life prediction of composite materials under complex, irregular stress states and his contribution in the development of novel experimental procedures for the analysis of the fatigue/fracture behavior of composites. Tab Content 6Author Website:Countries AvailableAll regions |