|
![]() |
|||
|
||||
OverviewThis thesis systematically introduces readers to a new metal-organic framework approach to fabricating nanostructured materials for electrochemical applications. Based on the metal-organic framework (MOF) approach, it also demonstrates the latest ideas on how to create optimal MOF and MOF-derived nanomaterials for electrochemical reactions under controlled conditions. The thesis offers a valuable resource for researchers who want to understand electrochemical reactions at nanoscale and optimize materials from rational design to achieve enhanced electrochemical performance. It also serves as a useful reference guide to fundamental research on advanced electrochemical energy storage materials and the synthesis of nanostructured materials. Full Product DetailsAuthor: Wei XiaPublisher: Springer Verlag, Singapore Imprint: Springer Verlag, Singapore Edition: 1st ed. 2018 Weight: 0.454kg ISBN: 9789811068102ISBN 10: 9811068100 Pages: 138 Publication Date: 13 April 2018 Audience: Professional and scholarly , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsIntroduction.- Preparation and characterization of MOF-derived nanomaterials.- Formation of the N-doped carbon nanoparticles and their application in oxygen reduction catalysis and Li storage.- Formation of the core-shell metal oxide nanoparticles and their application in oxygen reduction catalysis.- Formation of the hollow metal oxide nanoparticles and their application in oxygen reduction catalysis.- Formation of the 3D porous carbon and related application in Li-S cells.- Conclusion.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |