|
|
|||
|
||||
Overview15 0. PRELIMINARIES a) Notations from Manifold Theory b) The Language of Jet Manifolds c) Frame Manifolds d) Differentia! Ideals e) Exterior Differential Systems EULER-LAGRANGE EQUATIONS FOR DIFFERENTIAL SYSTEMS ~liTH ONE I. 32 INDEPENDENT VARIABLE a) Setting up the Problem; Classical Examples b) Variational Equations for Integral Manifolds of Differential Systems c) Differential Systems in Good Form; the Derived Flag, Cauchy Characteristics, and Prolongation of Exterior Differential Systems d) Derivation of the Euler-Lagrange Equations; Examples e) The Euler-Lagrange Differential System; Non-Degenerate Variational Problems; Examples FIRST INTEGRALS OF THE EULER-LAGRANGE SYSTEM; NOETHER'S II. 1D7 THEOREM AND EXAMPLES a) First Integrals and Noether's Theorem; Some Classical Examples; Variational Problems Algebraically Integrable by Quadratures b) Investigation of the Euler-Lagrange System for Some Differential-Geometric Variational Pro~lems: 2 i) ( K ds for Plane Curves; i i) Affine Arclength; 2 iii) f K ds for Space Curves; and iv) Delauney Problem. II I. EULER EQUATIONS FOR VARIATIONAL PROBLEfiJS IN HOMOGENEOUS SPACES 161 a) Derivation of the Equations: i) Motivation; i i) Review of the Classical Case; iii) the Genera 1 Euler Equations 2 K /2 ds b) Examples: i) the Euler Equations Associated to f for lEn; but for Curves in i i) Some Problems as in i) sn; Non- Curves in iii) Euler Equations Associated to degenerate Ruled Surfaces IV. Full Product DetailsAuthor: P.A. GriffithsPublisher: Birkhauser Boston Inc Imprint: Birkhauser Boston Inc Volume: 25 Weight: 0.688kg ISBN: 9780817631031ISBN 10: 0817631038 Pages: 339 Publication Date: 01 January 1983 Audience: College/higher education , Professional and scholarly , Undergraduate , Postgraduate, Research & Scholarly Format: Paperback Publisher's Status: Active Availability: In Print This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of Contents0. Preliminaries.- I. Euler-Lagrange Equations for Differential Systems with One Independent Variable.- II. First Integrals of the Euler-Lagrange System; Noether's Theorem and Examples.- III. Euler Equations for Variational Problems in Homogeneous Spaces.- IV. Endpoint Conditions; Jacobi Equations and the 2nd Variation; Conjugate Points; Fields and the Hamilton-Jacobi Equation; the Lagrange Problem.- Appendix: Miscellaneous Remarks and Examples.- a) Problems with Integral Constraints; Examples.- b) Classical Problems Expressed in Moving Frames.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |
||||