|
![]() |
|||
|
||||
OverviewThis book provides expository derivations for moments of a family of pseudo distributions, which is an extended family of distributions including the pseudo normal (PN) distributions recently proposed by the author. The PN includes the skew normal (SN) derived by A. Azzalini and the closed skew normal (CSN) obtained by A. Domínguez-Molina, G. González-Farías, and A. K. Gupta as special cases. It is known that the CSN includes the SN and other various distributions as special cases, which shows that the PN has a wider variety of distributions. The SN and CSN have symmetric and skewed asymmetric distributions. However, symmetric distributions are restricted to normal ones. On the other hand, symmetric distributions in the PN can be non-normal as well as normal. In this book, for the non-normal symmetric distributions, the term “kurtic normal (KN)” is used, where the coined word “kurtic” indicates “mesokurtic, leptokurtic, or platykurtic” used in statistics. The variety of the PN was made possible using stripe (tigerish) and sectional truncation in univariate and multivariate distributions, respectively. The proofs of the moments and associated results are not omitted and are often given in more than one method with their didactic explanations. Full Product DetailsAuthor: Haruhiko OgasawaraPublisher: Springer Verlag, Singapore Imprint: Springer Verlag, Singapore Edition: 1st ed. 2022 Volume: 2 Weight: 0.699kg ISBN: 9789811935244ISBN 10: 9811935246 Pages: 343 Publication Date: 02 January 2023 Audience: Professional and scholarly , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsReviewsAuthor InformationHaruhiko Ogasawara is Professor Emeritus, Otaru University of Commerce. Tab Content 6Author Website:Countries AvailableAll regions |