|
![]() |
|||
|
||||
OverviewOptimization algorithms in machine learning bridge theoretical foundations with practical applications, crucial for refining model performance. Techniques like gradient descent, stochastic gradient descent (SGD), and advanced methods such as Adam and RMSprop optimize model parameters to minimize error and enhance accuracy. Theoretical understanding encompasses concepts like convexity, convergence criteria, and adaptive learning rates, essential for algorithm selection based on dataset characteristics. In practice, implementing these algorithms involves tuning hyperparameters and assessing trade-offs between computational efficiency and model effectiveness across diverse datasets. Recent innovations, including meta-heuristic algorithms like genetic algorithms, further expand optimization capabilities for complex, non-linear problems. Mastering optimization algorithms empowers practitioners to navigate challenges in model training and deployment effectively, ensuring robust performance in real-world applications. This comprehensive understanding supports innovation in machine learning, driving advancements in various fields from healthcare to finance and beyond. Full Product DetailsAuthor: KinkyPublisher: Tredition Gmbh Imprint: Tredition Gmbh Dimensions: Width: 15.20cm , Height: 1.90cm , Length: 22.90cm Weight: 0.499kg ISBN: 9783384275837ISBN 10: 3384275837 Pages: 340 Publication Date: 01 July 2024 Audience: General/trade , General Format: Paperback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of ContentsReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |