Explanation-Based Neural Network Learning: A Lifelong Learning Approach

Author:   Sebastian Thrun ,  Tom M. Mitchell
Publisher:   Springer
Edition:   1996 ed.
Volume:   357
ISBN:  

9780792397168


Pages:   264
Publication Date:   30 April 1996
Format:   Hardback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $551.76 Quantity:  
Add to Cart

Share |

Explanation-Based Neural Network Learning: A Lifelong Learning Approach


Add your own review!

Overview

Lifelong learning addresses situations in which a learner faces a series of different learning tasks providing the opportunity for synergy among them. Explanation-based neural network learning (EBNN) is a machine-learning algorithm that transfers knowledge across multiple learning tasks. When faced with a new learning task, EBNN exploits domain knowledge accumulated in previous learning tasks to guide generalization in the new one. As a result, EBNN generalizes more accurately from less data than comparable methods. This book describes the basic EBNN paradigm and investigates it in the context of supervised learning, reinforcement learning, robotics and chess.

Full Product Details

Author:   Sebastian Thrun ,  Tom M. Mitchell
Publisher:   Springer
Imprint:   Springer
Edition:   1996 ed.
Volume:   357
Dimensions:   Width: 15.50cm , Height: 1.70cm , Length: 23.50cm
Weight:   1.270kg
ISBN:  

9780792397168


ISBN 10:   0792397169
Pages:   264
Publication Date:   30 April 1996
Audience:   College/higher education ,  Professional and scholarly ,  Postgraduate, Research & Scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

1 Introduction.- 1.1 Motivation.- 1.2 Lifelong Learning.- 1.3 A Simple Complexity Consideration.- 1.4 The EBNN Approach to Lifelong Learning.- 1.5 Overview.- 2 Explanation-Based Neural Network Learning.- 2.1 Inductive Neural Network Learning.- 2.2 Analytical Learning.- 2.3 Why Integrate Induction and Analysis?.- 2.4 The EBNN Learning Algorithm.- 2.5 A Simple Example.- 2.6 The Relation of Neural and Symbolic Explanation-Based Learning.- 2.7 Other Approaches that Combine Induction and Analysis.- 2.8 EBNN and Lifelong Learning.- 3 The Invariance Approach.- 3.1 Introduction.- 3.2 Lifelong Supervised Learning.- 3.3 The Invariance Approach.- 3.4 Example: Learning to Recognize Objects.- 3.5 Alternative Methods.- 3.6 Remarks.- 4 Reinforcement Learning.- 4.1 Learning Control.- 4.2 Lifelong Control Learning.- 4.3 Q-Learning.- 4.4 Generalizing Function Approximators and Q-Learning.- 4.5 Remarks.- 5 Empirical Results.- 5.1 Learning Robot Control.- 5.2 Navigation.- 5.3 Simulation.- 5.4 Approaching and Grasping a Cup.- 5.5 NeuroChess.- 5.6 Remarks.- 6 Discussion.- 6.1 Summary.- 6.2 Open Problems.- 6.3 Related Work.- 6.4 Concluding Remarks.- A An Algorithm for Approximating Values and Slopes with Artificial Neural Networks.- A.1 Definitions.- A.2 Network Forward Propagation.- A.3 Forward Propagation of Auxiliary Gradients.- A.4 Error Functions.- A.5 Minimizing the Value Error.- A.6 Minimizing the Slope Error.- A.7 The Squashing Function and its Derivatives.- A.8 Updating the Network Weights and Biases.- B Proofs of the Theorems.- C Example Chess Games.- C.1 Game 1.- C.2 Game 2.- References.- List of Symbols.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List