Evolution of Biological Systems in Random Media: Limit Theorems and Stability

Author:   Anatoly Swishchuk ,  Jianhong Wu
Publisher:   Springer
Edition:   Softcover reprint of the original 1st ed. 2003
Volume:   18
ISBN:  

9789048163984


Pages:   218
Publication Date:   07 December 2010
Format:   Paperback
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Our Price $314.16 Quantity:  
Add to Cart

Share |

Evolution of Biological Systems in Random Media: Limit Theorems and Stability


Add your own review!

Overview

Full Product Details

Author:   Anatoly Swishchuk ,  Jianhong Wu
Publisher:   Springer
Imprint:   Springer
Edition:   Softcover reprint of the original 1st ed. 2003
Volume:   18
Dimensions:   Width: 15.50cm , Height: 1.20cm , Length: 23.50cm
Weight:   0.454kg
ISBN:  

9789048163984


ISBN 10:   9048163986
Pages:   218
Publication Date:   07 December 2010
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Table of Contents

Preface. List of Notations. 1: Random Media. 1.1. Markov Chains. 1.2. Ergodicity and Reducibility of Markov Chains. 1.3. Markov Renewal Processes. 1.4. Semi-Markov Processes. 1.5. Jump Markov Processes. 1.6. Wiener Processes and Diffusion Processes. 1.7. Martingales. 1.8. Semigroups of Operators and their Generators. 1.9. Martingale Characterization of Markov and Semi-Markov Processes. 1.10. General Representation and Measurability of Biological Systems in Random Media. 2: Limit Theorems for Difference Equations in Random Media. 2.1. Limit Theorems for Random Evolutions. 2.2. Averaging of Difference Equations in Random Media. 2.3. Diffusion Approximation of Difference Equations in Random Media. 2.4. Normal Deviations of Difference Equations in Random Media. 2.5. Merging of Difference Equations in Random Media. 2.6. Stability of Difference Equations in Random Media. 2.7. Limit Theorems for Vector Difference Equations in Random Media. 3: Epidemic Models. 3.1. Deterministic Epidemic Models. 3.2. Stochastic Epidemic Model (Epidemic Model in Random Media). 3.3. Averaging of Epidemic Model in Random Media. 3.4. Merging of Epidemic Models in Random Media. 3.5. Diffusion Approximation of Epidemic Models in Random Media. 3.6. Normal Deviations of Epidemic Model in Random Media. 3.7. Stochastic Stability of Epidemic Model. 4: Genetic Selection Models. 4.1. Deterministic Genetic Selection Models. 4.2. Stochastic Genetic Selection Model (Genetic Selection Model in Random Media). 4.3. Averaging of Slow Genetic Selection Model in Random Media. 4.4. Merging of Slow Genetic Selection Model in Random Media. 4.5. Diffusion Approximation of Slow Genetic Selection Model in Random Media. 4.6. Normal Deviations of Slow Genetic Selection Model in Random Media. 4.7. Stochastic Stability of Slow Genetic Selection Model. 5: Branching Models. 5.1. Branching Models with Deterministic Generating Function. 5.2. Branching Models in Random Media. 5.3. Averaging of Branching Models in Random Media. 5.4. Merging of Branching Model in Random Media. 5.5. Diffusion Approximation of Branching Process in Random Media. 5.6. Normal Deviations of Branching Process in Random Media. 5.7. Stochastic Stability of Branching Model in Averaging and Diffusion Approximation Schemes. 6: Demographic Models. 6.1. Deterministic Demographic Model. 6.2. Stochastic Demographic Models (Demographic Models in Random Media). 6.3. Averaging of Demographic Models in Random Media. 6.4. Merging of Demographic Model. 6.5. Diffusion Approximation of Demographic Model. 6.6. Normal Deviations of Demographic Models in Random Media. 6.7. Stochastic Stability of Demographic Model in Averaging and Diffusion Approximation Schemes. 7: Logistic Growth Models. 7.1. Deterministic Logistic Growth Model. 7.2. Stochastic Logistic Growth Model (Logistic Growth Model in Random Media). 7.3. Averaging of Logistic Growth Model in Random Media. 7.4. Merging of Logistic Growth Model in Random Media. 7.5. Diffusion Approximation of Logistic Growth Model in Random Media. 7.6. Normal De

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List