Entropy Optimization and Mathematical Programming

Author:   Shu-Cherng Fang ,  J.R. Rajasekera ,  H.S.J. Tsao
Publisher:   Springer
Edition:   1997 ed.
Volume:   8
ISBN:  

9780792399391


Pages:   343
Publication Date:   31 July 1997
Format:   Hardback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $665.28 Quantity:  
Add to Cart

Share |

Entropy Optimization and Mathematical Programming


Add your own review!

Overview

Entropy optimization is a useful combination of classical engineering theory (entropy) with mathematical optimization. The resulting entropy optimization models have proved their usefulness with successful applications in areas such as image reconstruction, pattern recognition, statistical inference, queuing theory, spectral analysis, statistical mechanics, transportation planning, urban and regional planning, input-output analysis, portfolio investment, information analysis, and linear and nonlinear programming. While entropy optimization has been used in different fields, a good number of applicable solution methods have been loosely constructed without sufficient mathematical treatment. A systematic presentation with proper mathematical treatment of this material is needed by practitioners and researchers alike in all application areas. The purpose of this book is to meet this need. This text offers perspectives that meet the needs of diverse user communities so that the users can apply entropy optimization techniques with complete comfort and ease. The authors focus on the entropy optimization problems in finite dimensional Euclidean space so that only some basic familiarity with optimization is required of the reader.

Full Product Details

Author:   Shu-Cherng Fang ,  J.R. Rajasekera ,  H.S.J. Tsao
Publisher:   Springer
Imprint:   Springer
Edition:   1997 ed.
Volume:   8
Dimensions:   Width: 15.50cm , Height: 2.00cm , Length: 23.50cm
Weight:   1.500kg
ISBN:  

9780792399391


ISBN 10:   0792399390
Pages:   343
Publication Date:   31 July 1997
Audience:   College/higher education ,  Professional and scholarly ,  Undergraduate ,  Postgraduate, Research & Scholarly
Format:   Hardback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

1 Introduction to Entropy and Entropy Optimization Principles.- 1.1 Introduction to Finite-Dimensional Entropy.- 1.2 Entropy Optimization Problems.- References.- 2 Entropy Optimization Models.- 2.1 Queueing Theory.- 2.2 Transportation Planning.- 2.3 Input-Output Analysis.- 2.4 Regional Planning.- 2.5 Portfolio Optimization.- 2.6 Image Reconstruction.- References.- 3 Entropy Optimization Methods: Linear Case.- 3.1 Existing Methods.- 3.2 An Unconstrained Convex Programming Approach.- 3.3 Entropy Optimization Problems with Infinitely Many Linear Constraints.- References.- 4 Entropy Optimization Methods: General Convex Case.- 4.1 Existing Methods.- 4.2 Entropy Optimization with Quadratic Constraints.- 4.3 Entropy Optimization with Entropic Constraints.- 4.4 Entropy Optimization with Convex Constraints.- References.- 5 Entropic Perturbation Approach to Mathematical Programming.- 5.1 Linear Programming: Karmarkar-Form.- 5.2 Linear Programming: Standard-Form.- 5.3 Convex Quadratic Programming.- 5.4 Linear and Convex Quadratic Semi-infinite Programming.- References.- 6 Lp-Norm Perturbation Approach: A Generalization of Entropic Perturbation.- 6.1 Perturbing the Dual Feasible Region of Standard-form Linear Programs.- 6.2 Solving Linear Programs with Inequality Constraints via Perturbation of Feasible Region.- 6.3 Perturbing Dual Feasible Region of Convex Quadratic Programs.- References.- 7 Extensions and Related Results.- 7.1 Entropy Optimization with Countably Many Variables.- 7.2 Entropy Optimization and Bayesian Statistical Estimation.- 7.3 Entropic Regularization for Min-Max Problems.- 7.4 Semi-Infinite Min-Max Problems.- References.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List