|
![]() |
|||
|
||||
OverviewThere are three new appendices, one by Stefan Theisen on the role of Calabi– Yau manifolds in string theory and one by Otto Forster on the use of elliptic curves in computing theory and coding theory. In the third appendix we discuss the role of elliptic curves in homotopy theory. In these three introductions the reader can get a clue to the far-reaching implications of the theory of elliptic curves in mathematical sciences. During the ?nal production of this edition, the ICM 2002 manuscript of Mike Hopkins became available. This report outlines the role of elliptic curves in ho- topy theory. Elliptic curves appear in the form of the Weierstasse equation and its related changes of variable. The equations and the changes of variable are coded in an algebraic structure called a Hopf algebroid, and this Hopf algebroid is related to a cohomology theory called topological modular forms. Hopkins and his coworkers have used this theory in several directions, one being the explanation of elements in stable homotopy up to degree 60. In the third appendix we explain how what we described in Chapter 3 leads to the Weierstrass Hopf algebroid making a link with Hopkins’ paper. Full Product DetailsAuthor: Dale HusemöllerPublisher: Springer-Verlag New York Inc. Imprint: Springer-Verlag New York Inc. Edition: Softcover reprint of the original 2nd ed. 2004 Volume: 111 Dimensions: Width: 15.50cm , Height: 2.60cm , Length: 23.50cm Weight: 0.783kg ISBN: 9781441930255ISBN 10: 1441930256 Pages: 490 Publication Date: 19 November 2010 Audience: Professional and scholarly , College/higher education , Professional and scholarly , Professional & Vocational , Tertiary & Higher Education Format: Paperback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of Contentsto Rational Points on Plane Curves.- Elementary Properties of the Chord-Tangent Group Law on a Cubic Curve.- Plane Algebraic Curves.- Elliptic Curves and Their Isomorphisms.- Families of Elliptic Curves and Geometric Properties of Torsion Points.- Reduction mod p and Torsion Points.- Proof of Mordell’s Finite Generation Theorem.- Galois Cohomology and Isomorphism Classification of Elliptic Curves over Arbitrary Fields.- Descent and Galois Cohomology.- Elliptic and Hypergeometric Functions.- Theta Functions.- Modular Functions.- Endomorphisms of Elliptic Curves.- Elliptic Curves over Finite Fields.- Elliptic Curves over Local Fields.- Elliptic Curves over Global Fields and ?-Adic Representations.- L-Function of an Elliptic Curve and Its Analytic Continuation.- Remarks on the Birch and Swinnerton-Dyer Conjecture.- Remarks on the Modular Elliptic Curves Conjecture and Fermat’s Last Theorem.- Higher Dimensional Analogs of Elliptic Curves: Calabi-Yau Varieties.- Families of Elliptic Curves.ReviewsFrom the reviews of the second edition: Husemoller,s text was and is the great first introduction to the world of elliptic curves ... and a good guide to the current research literature as well. ... this second edition builds on the original in several ways. ... it has certainly gained a good deal of topicality, appeal, power of inspiration, and educational value for a wider public. No doubt, this text will maintain its role as both a useful primer and a passionate invitation to the evergreen theory of elliptic curves and their applications (Werner Kleinert, Zentralblatt MATH, Vol. 1040, 2004) From the reviews of the second edition: Husemoeller's text was and is the great first introduction to the world of elliptic curves ... and a good guide to the current research literature as well. ... this second edition builds on the original in several ways. ... it has certainly gained a good deal of topicality, appeal, power of inspiration, and educational value for a wider public. No doubt, this text will maintain its role as both a useful primer and a passionate invitation to the evergreen theory of elliptic curves and their applications (Werner Kleinert, Zentralblatt MATH, Vol. 1040, 2004) From the reviews of the second edition: Husemoller's text was and is the great first introduction to the world of elliptic curves ... and a good guide to the current research literature as well. ... this second edition builds on the original in several ways. ... it has certainly gained a good deal of topicality, appeal, power of inspiration, and educational value for a wider public. No doubt, this text will maintain its role as both a useful primer and a passionate invitation to the evergreen theory of elliptic curves and their applications (Werner Kleinert, Zentralblatt MATH, Vol. 1040, 2004) From the reviews of the second edition: Husemoller's text was and is the great first introduction to the world of elliptic curves ! and a good guide to the current research literature as well. ! this second edition builds on the original in several ways. ! it has certainly gained a good deal of topicality, appeal, power of inspiration, and educational value for a wider public. No doubt, this text will maintain its role as both a useful primer and a passionate invitation to the evergreen theory of elliptic curves and their applications (Werner Kleinert, Zentralblatt MATH, Vol. 1040, 2004) Author InformationTab Content 6Author Website:Countries AvailableAll regions |