Electronic States of Molecules and Atom Clusters: Foundations and Prospects of Semiempirical Methods

Author:   G. Del Re ,  G. Berthier ,  J. Serre
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Edition:   Softcover reprint of the original 1st ed. 1980
Volume:   13
ISBN:  

9783540097389


Pages:   180
Publication Date:   01 September 1980
Format:   Paperback
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Our Price $60.72 Quantity:  
Add to Cart

Share |

Electronic States of Molecules and Atom Clusters: Foundations and Prospects of Semiempirical Methods


Add your own review!

Overview

Full Product Details

Author:   G. Del Re ,  G. Berthier ,  J. Serre
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Imprint:   Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Edition:   Softcover reprint of the original 1st ed. 1980
Volume:   13
Dimensions:   Width: 17.00cm , Height: 1.00cm , Length: 24.40cm
Weight:   0.342kg
ISBN:  

9783540097389


ISBN 10:   3540097384
Pages:   180
Publication Date:   01 September 1980
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Table of Contents

1. Models and concepts in molecular theory.- 1.1 Scope of the quantum theory of molecules.- 1.2 Born Oppenheimer states.- 1.3 Computational and interpretational problems.- 1.4 Role and limitations of simplified models.- 1.5 Simplified models and model Hamiltonians.- 1.6 Atoms in molecules and electronegativities.- 1.6.1 Electronegativity in the VB method.- 1.6.2 Valence state concept.- 1.6.3 Hybridization and electronegativities.- 1.7 A conclusion: Models and the Plague of Non-observables.- 2. Mathematical foundations.- 2.1 Mathematical construction of many-electron models from an orbital basis.- 2.1.1 Second quantization formalism.- 2.1.2 Many-electron basis: implications of limited Cl.- 2.2 Model Hamiltonians.- 2.2.1 Non-interacting electrons.- 2.2.2 Intermediate models.- 2.2.3 The pairing theorem.- 2.3 Matrix formalism. Inclusion of overlap.- 2.3.1 The orbital bases and one-electron operators.- 2.3.2 Linear transformations.- 2.3.3 Creation-annihilation operators and the Hamiltonian.- 2.3.4 Eigenvalue equation for H?.- 2.4 The spectral decomposition of the Hamiltonian and effective potentials.- 2.4.1 The Spectral resolution and projection operators.- 2.4.2 Durand's effective Hamiltonians.- 2.4.3 Effective Hamiltonians and pseudopotentials.- 3. One-electron schemes.- 3.1 Huckel-type methods.- 3.2 A `naive' method for ? electrons.- 3.2.1 Inductive effect and atomic parameters.- 3.2.2 A one-electron Hamiltonian for localized bonds.- 3.2.3 Atomic parameters and the electronegativities of atoms in situ.- 3.2.4 Numerical details.- 3.2.5 Critical comments.- 3.3 The Huckel method for all valence-electrons: The tight binding (TB) approach of solid-state physics.- 3.3.1 The nearest-neighbour approximation.- 3.3.2 The case of many orbitals per atom.- 3.3.3 Core repulsions. Applications.- 3.3.4 The Huckel method as a pseudopotential scheme.- 3.4 All-valence-electron treatments: The extended Huckel theory (EHT).- 3.4.1 Justification and limitations of EHT.- 3.4.2 Applications of the EH method.- 3.4.3 Systems with several heteroatoms: The parameter question.- 4. Simplified SCF one-electron schemes and beyond.- 4.1 The SCF Hamiltonian.- 4.1.1 A simplified form of the total Hamiltonian.- 4.1.2 The basis and the operator n?ls.- 4.1.3 The one-electron SCF Hamiltonian.- 4.2 Construction of non-SCF Hamiltonians.- 4.2.1 General expression.- 4.2.2 The Huckel model.- 4.2.3 Determination of R(Math).- 4.2.4 Analysis of H?eff: The AO basis.- 4.2.5 SCF methods as independent-particle models.- 4.3 Many-electron models and their SCF version.- 4.3.1 Hubbard and Anderson Hamiltonian.- 4.3.2 Interaction between an atom and a solid.- 4.3.3 Average occupation number.- 4.4 Methods with iterative determination of atomic parameters.- 4.4.1 The in situ atomic orbital energy.- 4.4.2 Models based on equation (4.4.1).- 4.5 The PPP method and its extensions (CNDO family).- 4.5.1 The PPP method.- 4.5.2 All-valence PPP (NDO) methods.- 4.5.3 Applications of NDO methods: Hoffmann-Heilbrunner `through-space' and `through-bond' interactions.- 4.5.4 Applications of NDO method to polymers and crystals.- 4.5.5 Critique of NDO procedures.- 4.6 A general form of all valence SCF methods: The SCF extended-Huckel method.- 4.6.1 Expression of two-electron integrals.- 4.5.2 Core Hamiltonian matrix,.- 4.6.3 Calculation of matrix element of H?eff.- 4.6.4 Model Hamiltonian.- 4.7 Beyond one-electron schemes. Correlation, PCILO method excited states.- 4.7.1 Model Hamiltonians and configuration interaction.- 4.7.2 Semiempirical PCILO method.- 4.7.3 Applications of PCILO method.- 4.7.4 Calculations on excited states.- 4.8 A case study in semiempirical computations: Molecular force fields.- 4.8.1 Experimental material.- 4.8.2 Theoretical approaches.- 4.8.3 Force constant in tt electron-theories.- 4.9 Limitations of semiempirical and limited-basis methods: The N2O4 molecule.- 5. The basis problem.- 5.1 MVAO basis.- 5.1.1 Localization: A specific example.- 5.1.2 Localization and overlap.- 5.1.3 Hybridization and localization.- 5.2 Non-orthogonality.- 5.2.1 The Hiickel method in a nonorthogonal basis.- 5.2.2 Non-orthogonality catastrophe and n.n.a.- 5.2.3 Block factorization of the overlap matrix.- 5.3 General orbital bases.- 5.3.1 Transformation of basis and EH method.- 5.3.2 Basis and parameter problem.- 5.4 ?-Electron models and the ?-? separation.- 5.4.1 ?-Electrons or ?-orbitals?.- 5.4.2 Many electron aspects of the ?-? separation.- 5.4.3 An application of ?-electron schemes: Azulene.- 5.5 Basis problem in solid-state physics.- 5.5.1 Completeness and equivalence.- 5.5.2 OPW method.- 5.5.3 APW method, X? method, and related approaches.- 5.6 Metal-metal bond and the X? method.- 5.6.1 Metal-metal bond.- 5.6.2 Bond lengths.- 5.6.3 Theoretical treatments of metal-metal bonds.- 5.7 Reliability of computations and choice of the orbital basis.- 5.7.1 ZDO assumptions.- 5.7.2 Ab-initio methods as semiempirical methods.- 5.8 A comment on the use of group theory in calculations on molecules and aggregates of atoms.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List