|
![]() |
|||
|
||||
OverviewThe importance of materials science for the progress of electronic techno logy has been apparent to all since the invention of the transistor in 1948, though that epoch-making event was the result of far-sighted research planning by Bell Laboratories dating from a decade or more before: no mere chance discovery, therefore, but the fruition of work which allotted at its inception a vital role to materials. The transistor is now very old hat, but new materials developments are continually triggering fresh develop ments in electronics, from optical communications to high-temperature superconductors. Electronic engineers are now given at least two courses in materials as part of their degree programme. This book arose from a series of forty lectures the author gave to the third year students on the Extended Honours Degree Course in Electronic and Electrical Engineering at Loughborough University, though additional elementary material has been included to make the book suitable for first year students. The biggest problem in such a course is deciding what must be left out, and this I am afraid I shirked by leaving out all those areas which I was not familiar with from my days in the Ministry of Aviation, the semiconductor device industry and as a graduate student and research worker. I hope that what remains is sufficiently catholic. Full Product DetailsAuthor: L.A.A. WarnesPublisher: Springer-Verlag New York Inc. Imprint: Springer-Verlag New York Inc. Edition: Softcover reprint of the original 1st ed. 1990 Dimensions: Width: 15.50cm , Height: 1.60cm , Length: 23.50cm Weight: 0.474kg ISBN: 9781461568957ISBN 10: 1461568951 Pages: 292 Publication Date: 12 December 2012 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of Contents1 The Structure of Solids.- 1.1 Ideal Crystal Structures.- 1.1.1 The Close-packing of Spheres.- 1.1.2 The Lattice and the Basis.- 1.1.3 The Unit Cell.- 1.1.4 Miller Indices.- 1.2 Defects in Crystalline Solids.- 1.2.1 Thermal Vibrations.- 1.2.2 Zero-dimensional (Point) Defects.- 1.2.3 One-dimensional (Line) Defects: Dislocations.- 1.2.4 Two-dimensional Defects.- 1.2.5 Three-dimensional Defects.- 1.3 Binary Phase Diagrams.- 1.3.1 Gibbs’s Phase Rule.- 1.3.2 The Lever Rule.- 1.3.3 Eutectics.- Problems.- 2 The Classical Theory of Electrical Conduction.- 2.1 Drude’s Free Electron Theory.- 2.1.1 The Drift Velocity, Mobility and Ohm’s Law.- 2.1.2 An Estimate of Mobility and Drift Velocity.- 2.1.3 The Mean Free Path.- 2.2 The Hall Effect.- 2.2.1 The Hall Probe.- 2.3 The Wiedemann-Franz Law.- 2.4 Matthiessen’s Rule.- 2.5 Electromagnetic Waves in Solids.- 2.5.1 ‘Low’ Frequencies.- 2.5.2 The Skin Depth.- 2.6 The Plasma Frequency.- 2.6.1 An Example.- 2.6.2 Plasma Oscillations: Plasmons.- 2.7 Failures of Classical Free Electron Theory.- 2.7.1 The Specific Heat of Metals.- 2.7.2 The Dependence of Electrical Conductivity on Temperature.- Problems.- 3 The Quantum Theory of Electrons in Solids.- 3.1 Schroedinger’s Equation.- 3.2 The Particle in a Potential Well.- 3.3 The Pauli Exclusion Principle.- 3.4 The Fermi Energy.- 3.5 Fermi-Dirac Statistics.- 3.6 The Specific Heat of a Free Electron Gas.- 3.7 The Penney-Kronig Model.- 3.8 Energy Bands.- 3.8.1 The Effective Mass.- 3.8.2 Brillouin Zones.- 3.8.3 The Fermi Surface.- 3.8.4 The Density of States.- 3.9 Insulators, Semiconductors and Conductors.- Problems.- 4 Charge Carriers in Semiconductors.- 4.1 Intrinsic Conduction in Semiconductors.- 4.2 Extrinsic Conduction in Semiconductors.- 4.2.1 Compensation.- 4.2.2 The Fermi Level in Extrinsic Semiconductors.- 4.3 p-n Junctions.- 4.3.1 The Einstein Relation.- 4.3.2 The Depletion Region.- 4.3.3 The Rectifier Equation.- 4.3.4 Junction Breakdown.- 4.4 The Bipolar Junction Transistor.- 4.5 The MOSFET.- 4.6 Measurement of Semiconductor Properties.- 4.6.1 Conductivity and Type.- 4.6.2 The Mobility and Lifetime.- 4.6.3 The Hall Coefficient.- 4.6.4 The Carrier Concentration.- 4.6.5 The Effective Mass.- 4.6.6 The Energy Gap.- Problems.- 5 VLSI Technology.- 5.1 A Quick Overview of the IC Production Process.- 5.2 Crystal Growth and Wafer Production.- 5.2.1 Segregation.- 5.3 Epitaxy.- 5.3.1 The Evaluation of Epitaxial Layers.- 5.4 Oxidation.- 5.5 Dielectric and Polysilicon Deposition.- 5.5.1 Dielectric Characterization.- 5.6 Diffusion.- 5.6.1 Erfc Diffusion.- 5.6.2 Gaussian Diffusion.- 5.6.3 Diffusion Profile Measurement.- 5.7 Ion Implantation.- 5.7.1 Annealing Implanted Layers.- 5.8 Lithography.- 5.9 Metallization.- 5.9.1 Contacts.- 5.9.2 Junction Spiking.- 5.9.3 Electromigration.- 5.10 Assembly and Packaging.- 5.11 Beyond Silicon.- Problems.- 6 Magnetic Phenomena.- 6.1 Magnetic Units.- 6.2 Types of Magnetic Order.- 6.3 The Hysteresis Loop.- 6.4 The Saturation Polarization.- 6.4.1 The Change in Saturation Polarization with Temperature.- 6.5 Anisotropy Energy.- 6.5.1 Magnetocrystalline Anisotropy.- 6.5.2 Shape Anisotropy.- 6.6 Magnetic Domains.- 6.6.1 Domain Walls.- 6.6.2 Single-domain Particles.- 6.6.3 Hysteresis of Single-domain Particles.- 6.7 The Maximum Energy Product.- 6.8 Hysteresis in Multi-domain Magnetic Materials.- 6.8.1 The Initial Susceptibility.- 6.8.2 The Initial Magnetization Curve.- 6.9 Magnetostriction.- Problems.- 7 Magnetic Materials and Devices.- 7.1 Soft Magnetic Materials.- 7.1.1 Transformer Core Materials.- 7.1.2 Soft Ferrites.- 7.1.3 The Production Technology of Soft Ferrites.- 7.2 Materials in Magnetic Recording.- 7.3 Magnetic Bubbles.- 7.4 Microwave Devices.- 7.4.1 The Isolator.- 7.4.2 Circulators.- Problems.- 8 Dielectrics.- 8.1 The Electric Polarization.- 8.2 The Dielectric Constant or Relative Permittivity.- 8.3 Types of Polarization.- 8.3.1 Electronic Polarization.- 8.3.2 Orientational Polarization.- 8.3.3 The Total Polarization.- 8.4 The Local Field in a Dielectric.- 8.5 The Clausius-Mossotti Relation.- 8.5.1 The Refractive Index.- 8.6 Energy Absorption in Dielectrics.- 8.6.1 Dielectric Relaxation: The Debye Equation.- 8.6.2 The Loss Tangent.- 8.6.3 An Example of Capacitor Losses.- 8.7 Dielectric Breakdown.- 8.8 Ferroelectrics.- 8.8.1 The Catastrophe Theory.- 8.8.2 Uses of Ferroelectrics.- Problems.- 9 Materials for Optoelectronics.- 9.1 Light-emitting Diodes (LEDs).- 9.1.1 LEDs for Displays.- 9.1.2 Signal LEDs.- 9.2 Solid-state Lasers.- 9.2.1 Output Characteristics of Solid-state Lasers.- 9.3 Optical Fibres.- 9.3.1 Step-index Fibres.- 9.3.2 Graded-index Fibres.- 9.3.3 Intramodal Dispersion.- 9.3.4 Attenuation in Optical Fibres.- 9.3.5 The Manufacture of Optical Fibres.- 9.4 Signal Detectors.- 9.4.1 PIN Diodes.- 9.4.2 Avalanche Photodiodes.- 9.4.3 Phototransistors.- 9.5 The Solar Cell.- 9.5.1 Choice of Material.- 9.6 Displays.- 9.6.1 The Cathode Ray Tube (CRT).- 9.6.2 Liquid Crystal Displays.- 9.7 Integrated Optics?.- 9.7.1 The Optical Switch.- Problems.- 10 Superconductors.- 10.1 The Economics of Superconductivity.- 10.2 The Phenomenology of Superconductivity.- 10.3 Characteristic Lengths.- 10.3.1 Critical Fields.- 10.4 BCS Theory.- 10.5 The Josephson Effect.- 10.6 High-temperature Ceramic Superconductors.- 10.7 Applications of Superconductivity.- Problems.- Further Reading.- Appendix: The Periodic Table of the Elements.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |