|
![]() |
|||
|
||||
OverviewThe spin degree-of-freedom is o?ering a wide range of intriguing oppor- nities both in fundamental as well as in applied solid-state physics. When combined with the rich and fertile physics of low-dimensional semicondu- ingstructuresandwiththepossibilitytochange,forexample,carrierdensity, electric ?elds or coupling to other quantum systems in a controlled way, an extremely exciting and interesting research ?eld is opened. Most comm- cial electronic devices are based on spin-independent charge transport. In the last two decades, however, scientists have been focusing on the ambitious objective of exploiting the spin degree-of-freedom of the electron to achieve novel functionalities. Ferromagnetic semiconductors, spin transistors, sing- spin manipulations or spin-torque MRAMs (magnetoresistive random access memories) are some of the hot topics. The importance of spin phenomena for new applications was recognized by the Royal Swedish Academy of S- ences by awarding the 2007 Nobel Prize in Physics jointly to Albert Fert and Peter Grun .. berg ""for the discovery of giant magnetoresistance"". This - fect originates from spin-dependent scattering phenomena in a two-terminal ferromagnetic-paramagnetic-ferromagnetic junction leading to a new type of magnetic memory. The Hall e?ect and its applications remain fertile - search areas. The spin Hall e?ect, in analogy with the conventional Hall e?ect, occurs in paramagnetic systems as a result of spin-orbit interaction. Full Product DetailsAuthor: Marco FanciulliPublisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K Edition: 2009 ed. Volume: 115 Dimensions: Width: 15.50cm , Height: 1.50cm , Length: 23.50cm Weight: 0.427kg ISBN: 9783642260131ISBN 10: 3642260136 Pages: 261 Publication Date: 14 March 2012 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsResistively Detected ESR and ENDOR Experiments in Narrow and Wide Quantum Wells: A Comparative Study.- Electron-Spin Manipulation in Quantum Dot Systems.- Resistively Detected NMR in GaAs/AlGaAs.- Electron-Spin Dynamics in Self-Assembled (In,Ga)As/GaAs Quantum Dots.- Single-Electron-Spin Measurements in Si-Based Semiconductor Nanostructures.- Si/SiGe Quantum Devices, Quantum Wells, and Electron-Spin Coherence.- Electrical Detection of Electron-Spin Resonance in Two-Dimensional Systems.- Quantitative Treatment of Decoherence.- Measuring the Charge and Spin States of Electrons on Individual Dopant Atoms in Silicon.- Electron Spin as a Spectrometer of Nuclear-Spin Noise and Other Fluctuations.- A Robust and Fast Method to Compute Shallow States without Adjustable Parameters: Simulations for a Silicon-Based Qubit.- Photon-Assisted Tunneling in Quantum Dots.ReviewsAuthor InformationMarco Fanciulli is the Director of the CNR-INFM MDM (Materials and Devices for Microelectronics) National Laboratory and Full Professor at the Department of Material Science at the University of Milano Bicocca. Tab Content 6Author Website:Countries AvailableAll regions |