Electron Crystallography

Author:   D. Dorset ,  Sven Hovmöller ,  Xiaodong Zou
Publisher:   Springer
Edition:   1997 ed.
Volume:   347
ISBN:  

9780792348764


Pages:   440
Publication Date:   30 November 1997
Format:   Hardback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $1011.12 Quantity:  
Add to Cart

Share |

Electron Crystallography


Add your own review!

Overview

Practitioners in the field of quantitative electron crystallography describe the theoretical framework for electron scattering, specimen preparation, experimental techniques for optimum data collection, the methodology of structure analysis and refinement, and a range of applications to inorganic materials (including minerals), linear polymers, small organic molecules (including those used in non-linear optical devices), incommensurately modulated structures (including superconductors), alloys, and integral membrane proteins. The connection between electron crystallography and X-ray crystallography is defined, especially in the use of the latest methods for direct determination of crystallographic phases, as well as the unique role of image analysis of high-resolution electron micrographs for phase determination. The book is intended for use in a graduate-level courses on electron crystallography, and for researchers in this field.

Full Product Details

Author:   D. Dorset ,  Sven Hovmöller ,  Xiaodong Zou
Publisher:   Springer
Imprint:   Springer
Edition:   1997 ed.
Volume:   347
Dimensions:   Width: 15.60cm , Height: 2.50cm , Length: 23.40cm
Weight:   1.820kg
ISBN:  

9780792348764


ISBN 10:   0792348761
Pages:   440
Publication Date:   30 November 1997
Audience:   College/higher education ,  Professional and scholarly ,  Postgraduate, Research & Scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

1. Background.- The development of electron crystallography — in memory of Boris Konstantinovich Vainshtein (1921–1996).- 2. Experimental Techniques and Simulations.- Solid state structures.- Image formation and image contrast in HREM.- Electron microscopy techniques.- Definition, measurement and calculation of intensities in electron diffraction.- Convergent beam electron diffraction. Basic principles.- Convergent-beam electron diffraction.- Image simulation in high resolution transmission electron microscopy.- 3. Crystallographic Phase Determination.- The phase problem of x-ray crystallography: overview.- The effects of symmetry in real and reciprocal space.- Obtaining phases from electron microscopy for solving protein structures. Tribute to Boris Vainshtein (1921–1996).- Crystal structure determination by crystallographic image processing: I. HREM images, structure factors and projected potential.- Crystal structure determination by crystallographic image processing: II.Compensate for defocus, astigmatism, and crystal tilt.- An introduction to maximum entropy in action.- Multi-dimensional direct methods.- Crystal structure determination by two-stage image processing.- Success is not guaranteed — practical matters for direct phase determination in electron crystallography.- 4. Structure Refinement.- Crystal structure refinement incorporating chemical information.- Least squares refinement of structures from dynamic electron diffraction data.- Fourier refinement in electron crystallography.- Structure refinement through matching of experimental and simulated HRTEM images.- 5. Applications.- Direct methods versus electron diffraction: the first experiences by SIR97.- Structure determination by electron crystallography using a simulation approach combined withmaximum entropy with the aim of improving materials properties.- Multi-dimensional electron crystallography of Bi-based superconductors.- Structure determination by maximum entropy and likelihood.- Crystallographic image processing on minerals: 3D structures, defects and interfaces.- Electron diffraction in polymer crystal structure analysis: some examples.- Membrane proteins solved by electron microscopy and electron diffraction.- The need for electron crystallography in mineral sciences..- Electron diffraction of mineral structures and textures.- Extended Abstracts.- Structural electron microscopy characterization of the ternary compound S4In2Zn obtained by chemical transport..- Diffraction contrast in TEM images of modulated semiconductor alloys.- Electron crystallography of a metal azo salt pigment.- Systematic study of metal particles (Pt, Ni) contrast on amorphous support (silica) using multislice.- First steps in the structure determination of an oxycarbonate superconductor from electron diffraction intensities..- Effects of local crystallography on stress-induced voiding in passivated copper interconnects.- How to determine reliable intensities using film methods?.- Surface structures solved by direct methods.- Modulated structure determination of Pb-1212 and Pb-1223 by electron crystallographic image processing.- TEM studies of the early stages of precipitation in Al-Mg-Si alloys in comparison with electron radiation damage effects..- Structural models of ?2-inflated monoclinic and orthorhombic Al-Co phases.- Electron microscopy of thin protein crystals from vapour diffusion ‘hanging drops’ provides structural information at intermediate resolution.- Structural modulations in the Sr-Ca-Cu-0 system characterized by HRTEM.- Investigation of defects inplastically deformed Ni3A1 by TEM tilting experiments.- Oxidation in-situ of Nbl2O29 into a high resolution microscope.- Electron diffraction patterns of natural antigorites: a still unknown modulated crystal structure.- Exact atom positions by electron microscopy? — a quantitative comparison to X-ray crystallography.- WINREKS — A computer program for the reciprocal lattice reconstruction from a set of electron diffractograms.- Crystallographic phase transitions in laser irradiated cerium dioxide.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List