Electrochemically Enabled Sustainability: Devices, Materials and Mechanisms for Energy Conversion

Author:   Kwong-Yu Chan ,  Chi-Ying Vanessa Li
Publisher:   Taylor & Francis Inc
ISBN:  

9781466575431


Pages:   519
Publication Date:   13 June 2014
Format:   Hardback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $378.00 Quantity:  
Add to Cart

Share |

Electrochemically Enabled Sustainability: Devices, Materials and Mechanisms for Energy Conversion


Add your own review!

Overview

Electrochemically Enabled Sustainability: Devices, Materials and Mechanisms for Energy Conversion covers topics related to current research in electrochemical power sources, highlighting some of the latest concepts in electrochemical conversion for sustainability. The book examines the most recent and innovative technologies employed in battery and fuel cell technology. It introduces the fundamental concepts applied to these electrochemical power sources and provides in-depth discussion on the materials, design, and performance of these devices. Written by internationally acclaimed experts, the chapters illustrate how key technologies for sustainability are enabled by electrochemical conversion. Topics include the reduction of carbon dioxide to resolve issues of carbon capture, energy storage, and generation of portable fuel; turning waste into energy using microbial fuel cells; the promise of vanadium redox flow batteries for massive energy storage; and improved performance of hybrid devices. The book addresses numerous aspects of lithium-type batteries for vehicle propulsion and energy storage, presenting a broad range of lithium batteries, and considering nano-structuring issues, layered-structure materials, and hierarchical structure. This book provides timely coverage of critical issues in emerging and conventional technologies, presenting a wide range of electrochemical devices, related materials, and operation mechanisms. It stimulates an appreciation for the novelty of these electrochemical power sources and offers a projection of future integration of these devices in practice.

Full Product Details

Author:   Kwong-Yu Chan ,  Chi-Ying Vanessa Li
Publisher:   Taylor & Francis Inc
Imprint:   CRC Press Inc
Dimensions:   Width: 15.60cm , Height: 3.30cm , Length: 23.40cm
Weight:   0.839kg
ISBN:  

9781466575431


ISBN 10:   1466575433
Pages:   519
Publication Date:   13 June 2014
Audience:   Professional and scholarly ,  College/higher education ,  Professional and scholarly ,  Professional & Vocational ,  Tertiary & Higher Education
Format:   Hardback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

Reviews

Author Information

Kwong-Yu Chan, Ph.D., joined the Department of Chemistry, University of Hong Kong in 1988 and was promoted to full professor in 2002. Professor Chan has fundamental and applied research activities in molecular simulation, fuel cells, materials, and electrochemical applications. He has published over 150 papers and is a top 1 percent cited scientist, according to ISI’s Essential Science Indicators. Professor Chan has five inventions on the topics of fuel cells, ozone generation, and batteries. Chi-Ying Vanessa Li, Ph.D., joined the Department of Chemistry, University of Hong Kong, as a postdoctoral fellow in 2009. Dr. Li’s current work focuses on electrochemistry and catalysis. Her research interests include anode materials on lithium batteries, flow batteries, and MOFs (metal-organic frameworks) for catalytic applications. She has published over 20 articles in various peer-reviewed journals.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List