|
![]() |
|||
|
||||
OverviewThis book contains an elastic-plastic analysis of accumulate damage and fracture with practical applications with engineering materials and structure fatigue life estimations. Models as well as practical applications are presented, which makes the book interesting for both practitioners and theoretical researchers. Particular emphasis is laid on new approaches to the mixed-mode problem in fatigue and fracture, and especially to the fracture damage zone (FDZ) approach. The results of the demonstrated experimental and theoretical research lead to the presentation of different crack growth models, predicting the crack growth rate and, fatigue life of an initially angled crack under biaxial loads of arbitrary direction. Special attention is paid to the practical applications of the suggested models. Full Product DetailsAuthor: Valery N. ShlyannikovPublisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K Edition: 2003 ed. Volume: 7 Dimensions: Width: 15.50cm , Height: 1.50cm , Length: 23.50cm Weight: 1.190kg ISBN: 9783540443162ISBN 10: 3540443169 Pages: 246 Publication Date: 27 November 2002 Audience: Professional and scholarly , College/higher education , Professional & Vocational , Postgraduate, Research & Scholarly Format: Hardback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of ContentsI. Mixed-mode crack behavior under plane stress and plane strain small scale yielding.- 1.1 Governing equations.- 1.2 Numerical iterative method for solving the nonlinear eigenvalue problems.- 1.3 Application of J-integral to plastic stress intensity factor determination.- 1.4 Family of crack-tip fields characterized by dominating fracture mechanism.- 1.5 Finite element analysis of stress distributions at the crack tip.- 1.6 Conditions of existence for mixed mode fracture.- II. Modeling of crack growth by fracture damage zone.- 2.1 A modified strain-energy density approach.- 2.2 Strain energy density distributions.- 2.3 Fracture damage zone.- 2.4 Relation between cracks growth resistance and fracture process parameters in elastic-plastic solids.- 2.5 Elastic-plastic approach for modeling of fatigue crack behavior.- 2.6 Some aspects of the fatigue crack path prediction.- III. Experimental investigation of fatigue crack propagation.- 3.1 Specimens for study of fatigue and fracture processes and material properties.- 3.2 Method of interpretation for cyclic crack resistance characteristics.- 3.3 Effect of biaxial stress on fatigue crack growth in aluminum alloys.- 3.4 Influence of mixed mode loading on fatigue fracture of high strength steels.- 3.5 Fatigue crack growth trajectories for the aluminum alloys and steels.- IV. Models for predicting crack growth rate and fatigue life.- 4.1 Crack growth direction criterion.- 4.2 Criteria of equivalent plastic strain under a complex stress state.- 4.3 A model for predicting crack growth rate under biaxial loads.- 4.4 An analysis of crack growth under complex stress state with taking into account their orientation.- V. Practical applications.- 5.1 Fracture analysis of gas turbine engine disks and simulation modeling of operational conditions.- 5.2 Modeling fatigue crack behavior in a pressurized cylinder.- Reference.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |