Elastic Lidar: Theory, Practice, and Analysis Methods

Author:   Vladimir A. Kovalev (University of Iowa, Institute of Hydraulic Research, USA) ,  William E. Eichinger (University of Iowa, Institute of Hydraulic Research, USA)
Publisher:   John Wiley & Sons Inc
ISBN:  

9780471201717


Pages:   640
Publication Date:   25 May 2004
Format:   Hardback
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Our Price $379.95 Quantity:  
Add to Cart

Share |

Elastic Lidar: Theory, Practice, and Analysis Methods


Add your own review!

Overview

* Focuses only on elastic lidars and directly related topics. * Evaluates all of the major inversion and analysis methods. * Covers an emerging field that is generating a lot of interest.

Full Product Details

Author:   Vladimir A. Kovalev (University of Iowa, Institute of Hydraulic Research, USA) ,  William E. Eichinger (University of Iowa, Institute of Hydraulic Research, USA)
Publisher:   John Wiley & Sons Inc
Imprint:   Wiley-Interscience
Dimensions:   Width: 16.50cm , Height: 3.20cm , Length: 24.10cm
Weight:   1.016kg
ISBN:  

9780471201717


ISBN 10:   0471201715
Pages:   640
Publication Date:   25 May 2004
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Table of Contents

Preface. Definitions. 1. Atmospheric Properties. 1.1 Atmospheric Structure. 1.2 Atmospheric Properties. 2. Light Propagation in the Atmosphere. 2.1 Light Extinction and Transmittance. 2.2 Total and Directional Elastic Scattering of the Light Bean. 2.3 Light Scattering by Molecules and Particulates: Inelastic Scattering. 2.4 Light Absorption by Molecules and Particulates. 3. Fundamentals of the Lidar Technique. 3.1 Introduction to the Lidar Technique. 3.2 Lidar Equation and Its Constituents. 3.3 Elastic Lidar Hardware. 3.4 Practical Lidar Issues. 3.5 Eye Safety Issues and Hardware. 4. Detectors, Digitizers, Electronics. 4.1 Detectors. 4.2 Electric Circuits for Optical Detectors. 4.3 A-D Converters/Digitizers. 4.4 General. 5. Analytical Solutions of the Lidar Equation. 5.1 Simple Lidar-Equation Solution for a Homogene ous. 5.2 Basic Transformation of the Elastic Lidar Equation. 5.3 Lidar Equation Solution for a Single-Component Heterogeneous Atmosphere. 5.4 Lidar Equation Solution for a Two-Component Atmosphere. 5.5 Which Solution is Best? 6. Uncertainty Estimation for Lidar Measurements. 6.1 Uncertainty for the Slope Method. 6.2 Lidar Measurement Uncertainty in a Two-Component Atmosphere. 6.3 Background Constituent in the Original Lidar Signal and Lidar Signal Averaging. 7. Backscatter-to-Extinction Ratio. 7.1 Exploration of the Backscatter-to-Extinction Ratio on the Inversion Result. 7.2 Influence of Uncertainty in the Backscatter-to-Extinction Ratio. 8. Lidar Examination of Clear and Moderately Turbid Atmospheres. 8.1 One-Directional Lidar Measurements: Methods and Problems. 8.2 Inversion Techniques for a “Spotted” Atmosphere. 9. Multiangle Methods for Extinction Coefficient Determination. 9.1 Angle-Dependent Lidar Equation and Its Basic Solution. 9.2 Solution for the Layer-Integrated Form of the Angle-Dependent Lidar Equation. 9.3 Solution for the Two-Angle layer-Integrated Form of the Lidar Equation. 9.4 Two-Angle Solution for the Angle-Independent Lidar Equation. 9.5 High-Altitude Tropospheric Measurements with Lidar. 9.6 Which Method Us the Best? 10. Differential Absorption Lidar Technique (DIAL). 10.1 DIAL Processing Technique: Fundamentals. 10.2 DIAL Processing Technique: Problems. 10.3 Other Techniques for DIAL Data Processing. 11. Hardware Solutions to the Inversion Problem. 11.1 Use of N2 Raman Scattering for Extinction Measurement. 11.2 Resolution of Particulate and Molecular Scattering by Filtration. 11.3 Multiple-Wavelength Lidars. 12. Atmospheric Parameters from Elastic Lidar Data. 12.1 Visual Range in Horizontal Directions. 12.2 Visual Range in Slant Directions. 12.3 Temperature measurements. 12.4 Boundary Layer Height Determination. 12.5 Cloud Boundary Determination. 13. Wind Measurement Methods from Elastic Lidar Data. 13.1 Correlation Methods to Determine Wind Speed and Direction. 13.2 Edge Technique. 13.3 Fringe Imaging Technique. 13.4 Kinetic Energy, Dissipation Rate, and Divergence. Bibliography. Index.

Reviews

A comprehensive overview of lidar technology, this handbook is intended for researchers, graduate students and lidar users. (Sea Technology, November 2004) This book should be of significant value to researchers applying remote sensing to atmospheric problems, and of course will be of great interest to lidar specialists. (E-STREAMS, November 2004)


Author Information

VLADIMIR A. KOVALEV, PHD, is an atmospheric physicist in the Fire Sciences Laboratory, Rocky Mountain Research Station, USDA Forest Service, Missoula, Montana. WILLIAM E. EICHINGER, PHD, is a professor in the Department of Civil and Environmental Engineering at the University of Iowa.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List