Elastic and Inelastic Scattering in Electron Diffraction and Imaging

Author:   Zhong Lin Wang
Publisher:   Springer International Publishing AG
Edition:   Second Edition 2025
Volume:   205
ISBN:  

9783031908187


Pages:   477
Publication Date:   01 August 2025
Format:   Hardback
Availability:   Not yet available   Availability explained
This item is yet to be released. You can pre-order this item and we will dispatch it to you upon its release.

Our Price $527.97 Quantity:  
Pre-Order

Share |

Elastic and Inelastic Scattering in Electron Diffraction and Imaging


Add your own review!

Overview

This book provides an in-depth exploration of the physics underlying electron diffraction and imaging, with a focus on their applications in materials characterization. Originally published in 1995, the first edition systematically summarized various dynamic theories associated with quantitative electron microscopy and their applications in simulations of electron diffraction patterns and images. Since then, significant progress has been made in the field, necessitating this revised second edition. The second edition introduces new content, particularly emphasizing the diffraction and imaging of inelastically scattered electrons, a topic that has not been extensively covered in existing literature. This edition also includes updated theories and methodologies, reflecting the advancements in the field over the past decades. The book assumes that readers have a foundational understanding of electron microscopy, electron diffraction, and quantum mechanics. It aims to serve as a comprehensive guide for approaching phenomena observed in electron microscopy from the perspective of diffraction physics.

Full Product Details

Author:   Zhong Lin Wang
Publisher:   Springer International Publishing AG
Imprint:   Springer International Publishing AG
Edition:   Second Edition 2025
Volume:   205
ISBN:  

9783031908187


ISBN 10:   303190818
Pages:   477
Publication Date:   01 August 2025
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Forthcoming
Availability:   Not yet available   Availability explained
This item is yet to be released. You can pre-order this item and we will dispatch it to you upon its release.

Table of Contents

I Diffraction and Imaging of Elastically Scattered Electrons.- 1. Basic Kinematic Electron Diffraction.- 2. Dynamic Elastic Electron Scattering I: Bloch Wave Theory.- 3. Dynamic Elastic Electron Scattering II: Multislice Theory.- 4. Dynamic Elastic Electron Scattering III: Other Approaches.- 5. Diffraction and Imaging of Reflected High-Energy Electrons from Bulk Crystal Surfaces.- II Diffraction and Imaging of Inelastically Scattered Electrons.- 6. Inelastic Excitations and Absorption Effect in Electron Diffraction.- 7. Semiclassical Theory of Thermal Diffuse Scattering.- 8. Dynamic Inelastic Electron Scattering I: Bloch Wave Theory.- 9. Reciprocity in Electron Diffraction and Imaging.- 10. Dynamic Inelastic Electron Scattering II: Green’s Function Theory.- 11. Dynamic Inelastic Electron Scattering III: Multislice Theory.- 12. Dynamic Inelastic Electron Scattering IV: Modified Multislice Theory.- 13. Inelastic Scattering in Sub-Angstrom Electron Imaging and Holography    - 14. Dynamic theory of thermal diffusely scattered electrons.- 15. Electron diffuse scattering from crystals with correlated point defects. 16. Multiple inelastic electron scattering from thick crystals- 17. Inelastic Excitation of Crystals in Thermal Equilibrium with the Environment.- Appendixes.- A. Physical Constants, Electron Wavelengths, and Wave Numbers.- B. Properties of Fourier Transforms.- B.1. Identities.- C. Some Properties of Dirac Delta Functions.- C.1. Defining Relationships and Normalization Conditions.- C.2. Useful Representations of the Delta Function.- D. Integral Form of the Schrödinger Equation.- E. Some Useful Mathematical Relations.- References.

Reviews

Author Information

Dr. Zhong Lin Wang is a preeminent physicist and materials scientist whose groundbreaking work has revolutionized the fields of nanotechnology, energy harvesting, and self-powered systems. He currently serves as the director of the Beijing Institute of Nanoenergy and Nanosystems and holds the distinguished titles of Regents' Professor and Hightower Chair (Emeritus) at the Georgia Institute of Technology. Dr. Wang is widely recognized as the pioneer of the nanogenerators field, which has enabled advancements in distributed energy, self-powered sensors, and large-scale blue energy. Additionally, he coined and developed the fields of piezotronics and piezo-phototronics, which have significant implications for third-generation semiconductors. Wang has also made outstanding contribution to fundamentals of electron microscopy. Dr. Wang’s scientific impact is unparalleled.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List