|
![]() |
|||
|
||||
OverviewFull Product DetailsAuthor: Ernst KunzPublisher: Springer Fachmedien Wiesbaden Imprint: Vieweg+Teubner Verlag Edition: 1997 ed. Volume: 87 Weight: 0.455kg ISBN: 9783528072872ISBN 10: 3528072873 Pages: 270 Publication Date: 01 February 1997 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Language: German Table of ContentsKap. I. Affine algebraische Varietäten.- § 1. Definition und erste Eigenschaften affiner algebraischer Varietäten.- § 2. Schnitt einer Hyperfläche mit einer Geraden.- § 3. Das Verschwindungsideal einer algebraischen Varietät.- § 4. Zerlegung einer Varietät in irreduzible Komponenten.- § 5. Der Koordinatenring einer algebraischen Varietät.- Kap. II. Projektive algebraische Varietäten.- § 1. Der n-dimensionale projektive Raum.- § 2. Projektive algebraische Varietäten.- § 3. Projektive Abschließung affiner Varietäten.- § 4. Der Hauptsatz der Eliminationstheorie.- Kap.III. Das Spektrum eines Rings.- § 1. Die Zariski-Topologie.- § 2. Das homogene Spektrum eines graduierten Rings.- § 3. Weitere Eigenschaften der Zariski-Topologie.- Kap. IV. Reguläre und rationale Funktionen auf algebraischen Varietäten.- § 1. Reguläre Funktionen.- § 2. Rationale Funktionen auf algebraischen Varietäten.- § 3. Die lokalen Ringe in den Punkten algebraischer Varietäten.- Kap. V. Schemata.- § 1. Geringte Räume.- § 2. Affine Schemata.- § 3. Der Begriff des Schemas.- § 4. Projektive Schemata.- Kap. VI. Dimensionstheorie.- § 1. Die Krulldimension von topologischen Räumen und Ringen.- § 2. Primidealketten und ganze Ringerweiterungen.- § 3. Dimension affiner algebraischer K-Schemata und affiner K-Algebren.- § 4. Dimension affiner und projektiver algebraischer Varietäten.- § 5. Der Krullsche Hauptidealsatz. Dimension des Schnitts zweier Varietäten.- § 6. Dimension noetherscher lokaler Ringe. Parametersysteme.- Kap. VII. Reguläre und singuläre Punkte algebraischer Varietäten.- § 1. Reguläre Punkte. Reguläre lokale Ringe.- § 2. Dimension und Tiefe. Cohen-Macaulay-Varietäten.- § 3. Vollständige Durchschnitte.- § 4. Gorenstein-Varietäten.- Kap. VIII.Algebraische Gleichungssysteme mit nur endlich vielen Lösungen.- § 1. Der Satz von Bézout.- § 2. Fortführung der Schnitt-Theorie.- Anhang. Kommutative Algebra.- A. Graduierte Ringe und Moduln.- B. Lokalisation und homogene Lokalisation.- C. Moduln über noetherschen Ringen.- D. Filtrierte Algebren und Moduln.- E. Reguläre und quasireguläre Folgen.- F. Idealquotienten.- Literatur.- Sachwortverzeichnis.ReviewsAuthor InformationProfessor Ernst Kunz ist Professor für Mathematik an der Universität Regensburg. Tab Content 6Author Website:Countries AvailableAll regions |