|
![]() |
|||
|
||||
OverviewThis book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metrics-such as energy-efficiency, throughput, and latency-without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems. The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as formalization and organization of key concepts from contemporary work that provide insights that may spark new ideas. Full Product DetailsAuthor: Vivienne Sze , Yu-Hsin Chen , Tien-Ju YangPublisher: Morgan & Claypool Imprint: Morgan & Claypool Dimensions: Width: 19.10cm , Height: 2.10cm , Length: 23.50cm Weight: 0.803kg ISBN: 9781681738352ISBN 10: 168173835 Pages: 341 Publication Date: 24 June 2020 Audience: General/trade , General Format: Hardback Publisher's Status: Active Availability: Available To Order ![]() We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately. Table of ContentsReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |