|
![]() |
|||
|
||||
OverviewThis book provides a self-contained and systematic introduction to classical electron theory and its quantization, non-relativistic quantum electrodynamics. The first half of the book covers the classical theory. It discusses the well-defined Abraham model of extended charges in interaction with the electromagnetic field, and gives a study of the effective dynamics of charges under the condition that, on the scale given by the size of the charge distribution, they are far apart and the applied potentials vary slowly. The second half covers the quantum theory, leading to a coherent presentation of non-relativistic quantum electrodynamics. Topics discussed include non-perturbative properties of the basic Hamiltonian, the structure of resonances, the relaxation to the ground state through emission of photons, the non-perturbative derivation of the g-factor of the electron and the stability of matter. First released in 2004, this title has been reissued as an Open Access publication on Cambridge Core. Full Product DetailsAuthor: Herbert Spohn (Technische Universität München)Publisher: Cambridge University Press Imprint: Cambridge University Press Edition: Revised edition ISBN: 9781009402279ISBN 10: 1009402277 Pages: 378 Publication Date: 27 July 2023 Audience: General/trade , General Format: Hardback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsReviewsAuthor InformationHerbert Spohn is Professor of Mathematical Physics at Zentrum Mathematik, Technische Universität München. He obtained his Ph.D. from Ludwig-Maximilians-Universität München in 1975. He has conducted research at universities and institutes throughout the world. His research interests are in statistical physics, particularly dynamics and nonequilibrium statistical mechanics, with one focus on the derivation of macroscopic evolution equations from the dynamics of atoms. He has contributed numerous publications in these areas. From 2000 to 2002 he has been the president of the International Association of Mathematical Physics. Tab Content 6Author Website:Countries AvailableAll regions |