|
|
|||
|
||||
OverviewThis book provides an introduction to the interplay between linear algebra and dynamical systems in continuous time and in discrete time. It first reviews the autonomous case for one matrix A via induced dynamical systems in {R}^d and on Grassmannian manifolds. Then the main nonautonomous approaches are presented for which the time dependency of A(t) is given via skew-product flows using periodicity, or topological (chain recurrence) or ergodic properties (invariant measures). The authors develop generalizations of (real parts of) eigenvalues and eigenspaces as a starting point for a linear algebra for classes of time-varying linear systems, namely periodic, random, and perturbed (or controlled) systems. The book presents for the first time in one volume a unified approach via Lyapunov exponents to detailed proofs of Floquet theory, of the properties of the Morse spectrum, and of the multiplicative ergodic theorem for products of random matrices. The main tools, chain recurrence and Morse decompositions, as well as classical ergodic theory are introduced in a way that makes the entire material accessible for beginning graduate students. Full Product DetailsAuthor: Fritz Colonius , Wolfgang KliemannPublisher: American Mathematical Society Imprint: American Mathematical Society Volume: 158 Weight: 0.697kg ISBN: 9780821883198ISBN 10: 0821883194 Pages: 291 Publication Date: 30 October 2014 Audience: College/higher education , Postgraduate, Research & Scholarly Format: Hardback Publisher's Status: Active Availability: In Print This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of ContentsReviewsAuthor InformationFritz Colonius, Universitat Augsburg, Germany. Wolfgang Kliemann, Iowa State University, Ames, IA, USA. Tab Content 6Author Website:Countries AvailableAll regions |
||||