|
![]() |
|||
|
||||
OverviewFull Product DetailsAuthor: Xiaolei ZhangPublisher: De Gruyter Imprint: De Gruyter Dimensions: Width: 17.00cm , Height: 2.10cm , Length: 24.00cm Weight: 0.782kg ISBN: 9783110525199ISBN 10: 3110525194 Pages: 337 Publication Date: 04 December 2017 Audience: Professional and scholarly , Professional and scholarly , Professional & Vocational , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: Available To Order ![]() We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately. Table of ContentsContent Preface page 1 Introduction 1.1 Observational Background 1.2 Theoretical Background 1.3 Organization of the Material 2 Drivers of Secular Morphological Evolution of Galaxies 2.1 Motivations for the Theoretical Approach 2.2 Density Wave Crest as the Site of Gravitational Instability 2.3 Potential-Density Phase Shifts for Density Wave Modes 2.4 Linear Regime and Quasi-Steady State of the Wave Modes 2.5 Torque Coupling and Angular Momentum Transport 2.6 Rates of Secular Evolution 2.7 Relation to “Broadening of Resonances” 2.8 In a Nutshell 3 Verification of Analytical Results through N-Body Simulations 3.1 Overview of the N-Body Simulations of Disk Galaxies 3.2 Simulation Codes and Basic State Specifications 3.3 Signature of Collisionless Shock in N-Body Spirals 3.4 Modal Nature of a Spontaneously-Formed Pattern 3.5 Qualitative Signature of Secular Mass Redistribution 3.6 Longevity of the Spiral Modes 3.7 Role of Gas 3.8 Implication on Orbits as “Building Blocks” 3.9 Second Generation Tests 4 Astrophysical Implications of the New Dynamical Theory 4.1 Motivations and General Outline 4.2 Potential-Density Phase Shift (PDPS) Method for CR Determination 4.3 Secular Mass Migration and Bulge Building 4.4 Secular Heating and The Age-Velocity-Dispersion Relation 4.5 Secular Heating and the Size-Linewidth Relation 4.6 Other Characteristics of the Milky Way Galaxy and External Galaxies 4.7 Universal Rotation Curve 4.8 Secular Evolution and the Maintenance of Galaxy Scaling Relations 4.9 Butcher-Oemler Effect and Evolution of Cluster Galaxies 4.10 Secular Evolution and the Origin of Color-Magnitude Relation 4.11 An Example of Secular Evolution in Interacting Galaxies 4.12 Black-Hole-Mass and Bulge-Mass Correlation 5 Putting in All Together: What We Have Learned So Far 5.1 Reexamine the Foundations 5.2 Role of Basic State Specification 5.3 Broader Implications 5.4 Implications on the Cosmological Evolution of Galaxies 6 Concluding Remarks 7 Appendix. Nonequilibrium Phase Transition and Classical Mechanics 7.1 Foundation of Kinetic Theory: the Boltzmann Equation 7.2 From Kinetic Theory to Fluid Mechanics 7.3 Nonequilibrium Phase Transition and Galaxy Evolution 7.4 The Proper Choice of Hierarchies 8 ReferencesReviewsAuthor InformationXiaolei Zhang, George Mason University, USA Tab Content 6Author Website:Countries AvailableAll regions |