|
![]() |
|||
|
||||
OverviewIn this book, a methodology for parameter adaptation in meta-heuristic op-timization methods is proposed. This methodology is based on using met-rics about the population of the meta-heuristic methods, to decide through a fuzzy inference system the best parameter values that were carefully se-lected to be adjusted. With this modification of parameters we want to find a better model of the behavior of the optimization method, because with the modification of parameters, these will affect directly the way in which the global or local search are performed.Three different optimization methods were used to verify the improve-ment of the proposed methodology. In this case the optimization methods are: PSO (Particle Swarm Optimization), ACO (Ant Colony Optimization) and GSA (Gravitational Search Algorithm), where some parameters are se-lected to be dynamically adjusted, and these parameters have the most im-pact in the behavior of each optimization method.Simulation results show that the proposed methodology helps to each optimization method in obtaining better results than the results obtained by the original method without parameter adjustment. Full Product DetailsAuthor: Frumen Olivas , Fevrier Valdez , Oscar Castillo , Patricia MelinPublisher: Springer International Publishing AG Imprint: Springer International Publishing AG Edition: 1st ed. 2018 Weight: 1.883kg ISBN: 9783319708508ISBN 10: 3319708503 Pages: 105 Publication Date: 22 March 2018 Audience: College/higher education , Postgraduate, Research & Scholarly Format: Paperback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsIntroduction.- Theory and Background.- Problems Statement.- Methodology.- Simulation Results.- Statistical Analysis and Comparison of Results.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |