|
![]() |
|||
|
||||
OverviewFull Product DetailsAuthor: James Ramsay , Giles HookerPublisher: Springer-Verlag New York Inc. Imprint: Springer-Verlag New York Inc. Edition: 1st ed. 2017 Weight: 0.633kg ISBN: 9781493971886ISBN 10: 1493971883 Pages: 230 Publication Date: 28 June 2017 Audience: Professional and scholarly , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of Contents1 Introduction to Dynamic Models.- 2 DE notation and types.- 3 Linear Differential Equations and Systems.- 4 Nonlinear Differential Equations.- 5 Numerical Solutions.- 6 Qualitative Behavior.- 7 Trajectory Matching.- 8 Gradient Matching.- 9 Profiling for Linear Systems.- 10 Nonlinear Profiling.- References.- Glossary.- Index.ReviewsThis book is intended both for first year graduate students and for researchers in applied mathematics and/or statistics who want to check models with differential equations in data science. These kinds of models have a mechanistic approach, enlarging the classes of models for statisticians, and giving techniques for estimation of parameters, assessing the adequacy of models and planning experiments for applied mathematicians. (Sylvie Viguier-Pla, Mathematical Reviews, August, 2018) Author InformationJim Ramsay, PhD, is Professor Emeritus of Psychology and an Associate Member in the Department of Mathematics and Statistics at McGill University. He received his PhD from Princeton University in 1966 in quantitative psychology. He has been President of the Psychometric Society and the Statistical Society of Canada. He received the Gold Medal in 1998 for his contributions to psychometrics and functional data analysis and Honorary Membership in 2012 from the Statistical Society of Canada. Giles Hooker, PhD, is Associate Professor of Biological Statistics and Computational Biology at Cornell University. In addition to differential equation models, he has published extensively on functional data analysis and uncertainty quantification in machine learning. Much of his methodological work is inspired by collaborations in ecology and citizen science data. Tab Content 6Author Website:Countries AvailableAll regions |