|
|
|||
|
||||
OverviewThis dissertation, Domain of Attraction in Hybrid Systems by Chuen-kit, Luk, 陸傳傑, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: Domain of Attraction (DoA) is a set of initial conditions for which the system converges to the equilibrium point. In fact, it is a key problem in control engineering to guarantee stability within a workspace and avoid system failures. Classical applications include pendulum systems, tunnel diode circuits, mass-spring systems, negative-resistance oscillators and more recently, these have been found in other fields such as biology and ecology. This thesis firstly addresses the estimation of the DoA for a class of hybrid nonlinear systems in both discrete and continuous-time. The state space is partitioned into several regions which are described by polynomial inequalities, and the union of all the regions is a complete cover of the state space. The system dynamics are defined on each region independently from the others by polynomial functions. The problem of computing the largest sublevel set of a Lyapunov function included in the DoA is considered. An approach is proposed for addressing this problem based on linear matrix inequalities (LMIs), which provides a lower bound of the sought estimate by establishing negativity of the Lyapunov function derivative on each region. Secondly, a sufficient and necessary condition is firstly provided for establishing optimality of the found lower bound. This requires to solve linear algebra operations in typical cases. The problem of looking for variable Lyapunov functions that maximize the estimate of the DoA is also considered, describing several strategies where the proposed approach can be readily adopted. Thirdly, the computation of static nonlinear output feedback controllers for increasing the DoA of an equilibrium point of continuous hybrid nonlinear polynomial systems is addressed. A dynamical system where the state space is partitioned into possibly overlapping regions, and where the vector field is defined independently among the regions by polynomial functions, will be considered. The computation of static nonlinear output feedback controller that increase the estimate of the DoA provided by a polynomial Lyapunov function is addressed. The controller can be common or vary among the regions that partition the state space. A strategy is proposed which provides guaranteed estimates of the increased DoA controllers and the controllers required to achieve them. Moreover, this strategy can be readily exploited with optimality test and variable Lyapunov functions through the use of approaches described. Subjects: Mathematical optimizationSystems engineering Full Product DetailsAuthor: Chuen-Kit Luk , 陸傳傑Publisher: Open Dissertation Press Imprint: Open Dissertation Press Dimensions: Width: 21.60cm , Height: 0.80cm , Length: 27.90cm Weight: 0.581kg ISBN: 9781361013458ISBN 10: 1361013451 Publication Date: 26 January 2017 Audience: General/trade , General Format: Hardback Publisher's Status: Active Availability: Temporarily unavailable The supplier advises that this item is temporarily unavailable. It will be ordered for you and placed on backorder. Once it does come back in stock, we will ship it out to you. Table of ContentsReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |
||||