|
![]() |
|||
|
||||
OverviewDistributions in the Physical and Engineering Sciences is a comprehensive exposition on analytic methods for solving science and engineering problems which is written from the unifying viewpoint of distribution theory and enriched with many modern topics which are important to practitioners and researchers. The goal of the book is to give the reader, specialist and non-specialist usable and modern mathematical tools in their research and analysis. This new text is intended for graduate students and researchers in applied mathematics, physical sciences and engineering. The careful explanations, accessible writing style, and many illustrations/examples also make it suitable for use as a self-study reference by anyone seeking greater understanding and proficiency in the problem solving methods presented. The book is ideal for a general scientific and engineering audience, yet it is mathematically precise. The present, softcover reprint is designed to make this classic textbookavailable to a wider audience. Full Product DetailsAuthor: Alexander I. Saichev , Wojbor WoyczynskiPublisher: Springer Nature Switzerland AG Imprint: Springer Nature Switzerland AG Edition: Softcover reprint of the original 1st ed. 2018 Weight: 0.545kg ISBN: 9783030074272ISBN 10: 3030074277 Pages: 336 Publication Date: 14 December 2018 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsI Distributions and their Basic Applications.- 1 Basic Definitions and Operations.- 2 Basic Applications: Rigorous and Pragmatic.- II Integral Transforms and Divergent Series.- 3 Fourier Transform.- 4 Asymptotics of Fourier Transforms.- 5 Stationary Phase and Related Method.- 6 Singular Integrals and Fractal Calculus.- 7 Uncertainty Principle and Wavelet Transforms.- 8 Summation of Divergent Series and Integrals.- A Answers and Solutions.- A.1 Chapter 1. Definitions and operations.- A.2 Chapter 2. Basic applications.- A.3 Chapter 3. Fourier transform.- A.4 Chapter 4. Asymptotics of Fourier transforms.- A.5 Chapter 5. Stationary phase and related methods.- A.6 Chapter 6. Singular integrals and fractal calculus.- A.7 Chapter 7. Uncertainty principle and wavelet transform.- A. 8 Chapter 8. Summation of divergent series and integrals.- B Bibliographical Notes.ReviewsAuthor InformationAlexander I. Saichev was Professor of Mathematics at the Radio Physics Faculty of the Nizhny Novgorod University and a Professor in the Department of Management, Technology, and Economics at the Swiss Federal Institute of Technology. Wojbor A. Woyczynski is Professor of Mathematics and Director of the Center for Stochastic and Chaotic Processes in Science and Technology at Case Western University. Tab Content 6Author Website:Countries AvailableAll regions |