Distribution Theory: Convolution, Fourier Transform, and Laplace Transform

Author:   Gerrit Dijk
Publisher:   De Gruyter
ISBN:  

9783110295917


Pages:   117
Publication Date:   15 March 2013
Format:   Hardback
Availability:   Available To Order   Availability explained
We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately.

Our Price $92.40 Quantity:  
Add to Cart

Share |

Distribution Theory: Convolution, Fourier Transform, and Laplace Transform


Add your own review!

Overview

The theory of distributions has numerous applications and is extensively used in mathematics, physics and engineering. There is however relatively little elementary expository literature on distribution theory. This book is intended as an introduction. Starting with the elementary theory of distributions, it proceeds to convolution products of distributions, Fourier and Laplace transforms, tempered distributions, summable distributions and applications. The theory is illustrated by several examples, mostly beginning with the case of the real line and then followed by examples in higher dimensions. This is a justified and practical approach, it helps the reader to become familiar with the subject. A moderate number of exercises are added. It is suitable for a one-semester course at the advanced undergraduate or beginning graduatelevelor for self-study.

Full Product Details

Author:   Gerrit Dijk
Publisher:   De Gruyter
Imprint:   De Gruyter
Weight:   0.223kg
ISBN:  

9783110295917


ISBN 10:   3110295911
Pages:   117
Publication Date:   15 March 2013
Audience:   College/higher education ,  Tertiary & Higher Education ,  Tertiary & Higher Education
Format:   Hardback
Publisher's Status:   Active
Availability:   Available To Order   Availability explained
We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately.

Table of Contents

Preface 2 1 Definition and first properties of distributions 7 1.1 Test functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2 Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 Support of a distribution . . . . . . . . . . . . . . . . . . . . . 10 2 Differentiating distributions 13 2.1 Definition and properties . . . . . . . . . . . . . . . . . . . . . 13 2.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 The distributions x−1+ ( 6= 0,−1,−2, . . . )* . . . . . . . . . . 16 2.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.5 Green’s formula and harmonic functions . . . . . . . . . . . . 19 2.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3 Multiplication and convergence of distributions 27 3.1 Multiplication with a C1 function . . . . . . . . . . . . . . . 27 3.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3 Convergence in D0 . . . . . . . . . . . . . . . . . . . . . . . . 28 3.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4 Distributions with compact support 31 4.1 Definition and properties . . . . . . . . . . . . . . . . . . . . . 31 4.2 Distributions supported at the origin . . . . . . . . . . . . . . 32 4.3 Taylor’s formula for Rn . . . . . . . . . . . . . . . . . . . . . 33 4.4 Structure of a distribution* . . . . . . . . . . . . . . . . . . . 34 5 Convolution of distributions 36 5.1 Tensor product of distributions . . . . . . . . . . . . . . . . . 36 5.2 Convolution product of distributions . . . . . . . . . . . . . . 38 5.3 Associativity of the convolution product . . . . . . . . . . . . 44 5.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.5 Newton potentials and harmonic functions . . . . . . . . . . . 45 5.6 Convolution equations . . . . . . . . . . . . . . . . . . . . . . 47 5.7 Symbolic calculus of Heaviside . . . . . . . . . . . . . . . . . 50 5.8 Volterra integral equations of the second kind . . . . . . . . . 52 5.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.10 Systems of convolution equations* . . . . . . . . . . . . . . . 55 5.11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6 The Fourier transform 57 6.1 Fourier transform of a function on R . . . . . . . . . . . . . . 57 6.2 The inversion theorem . . . . . . . . . . . . . . . . . . . . . . 60 6.3 Plancherel’s theorem . . . . . . . . . . . . . . . . . . . . . . . 61 6.4 Differentiability properties . . . . . . . . . . . . . . . . . . . . 62 6.5 The Schwartz space S(R) . . . . . . . . . . . . . . . . . . . . 63 6.6 The space of tempered distributions S0(R) . . . . . . . . . . . 65 6.7 Structure of a tempered distribution* . . . . . . . . . . . . . 66 6.8 Fourier transform of a tempered distribution . . . . . . . . . 67 6.9 Paley Wiener theorems on R* . . . . . . . . . . . . . . . . . . 69 6.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.11 Fourier transform in Rn . . . . . . . . . . . . . . . . . . . . . 73 6.12 The heat or diffusion equation in one dimension . . . . . . . . 75 7 The Laplace transform 79 7.1 Laplace transform of a function . . . . . . . . . . . . . . . . . 79 7.2 Laplace transform of a distribution . . . . . . . . . . . . . . . 80 7.3 Laplace transform and convolution . . . . . . . . . . . . . . . 81 7.4 Inversion formula for the Laplace transform . . . . . . . . . . 84 8 Summable distributions* 87 8.1 Definition and main properties . . . . . . . . . . . . . . . . . 87 8.2 The iterated Poisson equation . . . . . . . . . . . . . . . . . . 88 8.3 Proof of the main theorem . . . . . . . . . . . . . . . . . . . . 89 8.4 Canonical extension of a summable distribution . . . . . . . . 91 8.5 Rank of a distribution . . . . . . . . . . . . . . . . . . . . . . 93 9 Appendix 96 9.1 The Banach-Steinhaus theorem . . . . . . . . . . . . . . . . . 96 9.2 The beta and gamma function . . . . . . . . . . . . . . . . . 103 Bibliography 108 Index 109

Reviews

Author Information

Gerrit van Dijk, Leiden University, The Netherlands.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List