Discrete Gambling and Stochastic Games

Author:   Ashok P. Maitra ,  William D. Sudderth
Publisher:   Springer-Verlag New York Inc.
Edition:   1996 ed.
Volume:   32
ISBN:  

9780387946283


Pages:   244
Publication Date:   14 March 1996
Format:   Hardback
Availability:   Awaiting stock   Availability explained
The supplier is currently out of stock of this item. It will be ordered for you and placed on backorder. Once it does come back in stock, we will ship it out for you.

Our Price $406.56 Quantity:  
Add to Cart

Share |

Discrete Gambling and Stochastic Games


Add your own review!

Overview

The theory of probability began in the seventeenth century with attempts to calculate the odds of winning in certain games of change. However, it was not until the middle of the twentieth century that mathematicians developed general techniques for maximizing the chances of beating a casino or winning against an intelligent opponent. These methods of finding optimal strategies are at the heart of the modern theory of stochastic control and stochastic games. This monograph provides an introduction to the ideas of gambling theory and stochastic games. The first chapters introduce the ideas and notation of gambling theory. Chapters 3 and 4 consider ""leavable"" and ""nonleavable"" problems which form the core theory of this subject. Chapters 5, 6, and 7 cover stationary strategies, approximate gambling problems, and two-person zero-sum stochastic games respectively. Throughout, the authors have included examples and there are problem sets at the end of each chapter.

Full Product Details

Author:   Ashok P. Maitra ,  William D. Sudderth
Publisher:   Springer-Verlag New York Inc.
Imprint:   Springer-Verlag New York Inc.
Edition:   1996 ed.
Volume:   32
Dimensions:   Width: 15.60cm , Height: 1.50cm , Length: 23.40cm
Weight:   1.200kg
ISBN:  

9780387946283


ISBN 10:   0387946284
Pages:   244
Publication Date:   14 March 1996
Audience:   College/higher education ,  Professional and scholarly ,  Postgraduate, Research & Scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   Awaiting stock   Availability explained
The supplier is currently out of stock of this item. It will be ordered for you and placed on backorder. Once it does come back in stock, we will ship it out for you.

Table of Contents

1 Introduction.- 1.1 Preview.- 1.2 Prerequisites.- 1.3 Numbering.- 2 Gambling Houses and the Conservation of Fairness.- 2.1 Introduction.- 2.2 Gambles, Gambling Houses, and Strategies.- 2.3 Stopping Times and Stop Rules.- 2.4 An Optional Sampling Theorem.- 2.5 Martingale Convergence Theorems.- 2.6 The Ordinals and Transfinite Induction.- 2.7 Uncountable State Spaces and Continuous-Time.- 2.8 Problems for Chapter 2.- 3 Leavable Gambling Problems.- 3.1 The Fundamental Theorem.- 3.2 The One-Day Operator and the Optimality Equation.- 3.3 The Utility of a Strategy.- 3.4 Some Examples.- 3.5 Optimal Strategies.- 3.6 Backward Induction: An Algorithm for U.- 3.7 Problems for Chapter 3.- 4 Nonleavable Gambling Problems.- 4.1 Introduction.- 4.2 Understanding u(?).- 4.3 A Characterization of V.- 4.4 The Optimality Equation for V.- 4.5 Proving Optimality.- 4.6 Some Examples.- 4.7 Optimal Strategies.- 4.8 Another Characterization of V.- 4.9 An Algorithm for V.- 4.10 Problems for Chapter 4.- 5 Stationary Families of Strategies.- 5.1 Introduction.- 5.2 Comparing Strategies.- 5.3 Finite Gambling Problems.- 5.4 Nonnegative Stop-or-Go Problems.- 5.5 Leavable Houses.- 5.6 An Example of Blackwell and Ramakrishnan.- 5.7 Markov Families of Strategies.- 5.8 Stationary Plans in Dynamic Programming.- 5.9 Problems for Chapter 5.- 6 Approximation Theorems.- 6.1 Introduction.- 6.2 Analytic Sets.- 6.3 Optimality Equations.- 6.4 Special Cases of Theorem 1.2.- 6.5 The Going-Up Property of $$ \overline M $$.- 6.6 Dynamic Capacities and the Proof of Theorem 1.2.- 6.7 Approximating Functions.- 6.8 Composition Closure and Saturated House.- 6.9 Problems for Chapter 6.- 7 Stochastic Games.- 7.1 Introduction.- 7.2 Two-Person, Zero-Sum Games.- 7.3 The Dynamics of Stochastic Games.- 7.4 Stochastic Games withlim sup Payoff.- 7.5 Other Payoff Functions.- 7.6 The One-Day Operator.- 7.7 Leavable Games.- 7.8 Families of Optimal Strategies for Leavable Games.- 7.9 Examples of Leavable Games.- 7.10 A Modification of Leavable Games and the Operator T.- 7.11 An Algorithm for the Value of a Nonleavable Game.- 7.12 The Optimality Equation for V.- 7.13 Good Strategies in Nonleavable Games.- 7.14 Win, Lose, or Draw.- 7.15 Recursive Matrix Games.- 7.16 Games of Survival.- 7.17 The Big Match.- 7.18 Problems for Chapter 7.- References.- Symbol Index.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List