Discrete Gambling and Stochastic Games

Author:   Ashok P. Maitra ,  William D. Sudderth
Publisher:   Springer-Verlag New York Inc.
Edition:   Softcover reprint of the original 1st ed. 1996
Volume:   32
ISBN:  

9781461284673


Pages:   244
Publication Date:   17 September 2011
Format:   Paperback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $290.37 Quantity:  
Add to Cart

Share |

Discrete Gambling and Stochastic Games


Add your own review!

Overview

The theory of probability began in the seventeenth century with attempts to calculate the odds of winning in certain games of chance. However, it was not until the middle of the twentieth century that mathematicians de­ veloped general techniques for maximizing the chances of beating a casino or winning against an intelligent opponent. These methods of finding op­ timal strategies for a player are at the heart of the modern theories of stochastic control and stochastic games. There are numerous applications to engineering and the social sciences, but the liveliest intuition still comes from gambling. The now classic work How to Gamble If You Must: Inequalities for Stochastic Processes by Dubins and Savage (1965) uses gambling termi­ nology and examples to develop an elegant, deep, and quite general theory of discrete-time stochastic control. A gambler ""controls"" the stochastic pro­ cess of his or her successive fortunes by choosing which games to play and what bets to make.

Full Product Details

Author:   Ashok P. Maitra ,  William D. Sudderth
Publisher:   Springer-Verlag New York Inc.
Imprint:   Springer-Verlag New York Inc.
Edition:   Softcover reprint of the original 1st ed. 1996
Volume:   32
Dimensions:   Width: 15.50cm , Height: 1.30cm , Length: 23.50cm
Weight:   0.400kg
ISBN:  

9781461284673


ISBN 10:   1461284678
Pages:   244
Publication Date:   17 September 2011
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

1 Introduction.- 1.1 Preview.- 1.2 Prerequisites.- 1.3 Numbering.- 2 Gambling Houses and the Conservation of Fairness.- 2.1 Introduction.- 2.2 Gambles, Gambling Houses, and Strategies.- 2.3 Stopping Times and Stop Rules.- 2.4 An Optional Sampling Theorem.- 2.5 Martingale Convergence Theorems.- 2.6 The Ordinals and Transfinite Induction.- 2.7 Uncountable State Spaces and Continuous-Time.- 2.8 Problems for Chapter 2.- 3 Leavable Gambling Problems.- 3.1 The Fundamental Theorem.- 3.2 The One-Day Operator and the Optimality Equation.- 3.3 The Utility of a Strategy.- 3.4 Some Examples.- 3.5 Optimal Strategies.- 3.6 Backward Induction: An Algorithm for U.- 3.7 Problems for Chapter 3.- 4 Nonleavable Gambling Problems.- 4.1 Introduction.- 4.2 Understanding u(?).- 4.3 A Characterization of V.- 4.4 The Optimality Equation for V.- 4.5 Proving Optimality.- 4.6 Some Examples.- 4.7 Optimal Strategies.- 4.8 Another Characterization of V.- 4.9 An Algorithm for V.- 4.10 Problems for Chapter 4.- 5 Stationary Families of Strategies.- 5.1 Introduction.- 5.2 Comparing Strategies.- 5.3 Finite Gambling Problems.- 5.4 Nonnegative Stop-or-Go Problems.- 5.5 Leavable Houses.- 5.6 An Example of Blackwell and Ramakrishnan.- 5.7 Markov Families of Strategies.- 5.8 Stationary Plans in Dynamic Programming.- 5.9 Problems for Chapter 5.- 6 Approximation Theorems.- 6.1 Introduction.- 6.2 Analytic Sets.- 6.3 Optimality Equations.- 6.4 Special Cases of Theorem 1.2.- 6.5 The Going-Up Property of $$ \overline M $$.- 6.6 Dynamic Capacities and the Proof of Theorem 1.2.- 6.7 Approximating Functions.- 6.8 Composition Closure and Saturated House.- 6.9 Problems for Chapter 6.- 7 Stochastic Games.- 7.1 Introduction.- 7.2 Two-Person, Zero-Sum Games.- 7.3 The Dynamics of Stochastic Games.- 7.4 Stochastic Games withlim sup Payoff.- 7.5 Other Payoff Functions.- 7.6 The One-Day Operator.- 7.7 Leavable Games.- 7.8 Families of Optimal Strategies for Leavable Games.- 7.9 Examples of Leavable Games.- 7.10 A Modification of Leavable Games and the Operator T.- 7.11 An Algorithm for the Value of a Nonleavable Game.- 7.12 The Optimality Equation for V.- 7.13 Good Strategies in Nonleavable Games.- 7.14 Win, Lose, or Draw.- 7.15 Recursive Matrix Games.- 7.16 Games of Survival.- 7.17 The Big Match.- 7.18 Problems for Chapter 7.- References.- Symbol Index.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List